Maria Isabel Álvarez-Castaño, Andreas Gejl Madsen, Jorge Madrid-Wolff, Viola Sgarminato, Antoine Boniface, Jesper Glückstad, Christophe Moser
{"title":"Holographic tomographic volumetric additive manufacturing","authors":"Maria Isabel Álvarez-Castaño, Andreas Gejl Madsen, Jorge Madrid-Wolff, Viola Sgarminato, Antoine Boniface, Jesper Glückstad, Christophe Moser","doi":"10.1038/s41467-025-56852-4","DOIUrl":null,"url":null,"abstract":"<p>Several 3D light-based printing technologies have been developed that rely on the photopolymerization of liquid resins. A recent method, so-called Tomographic Volumetric Additive Manufacturing, allows the fabrication of microscale objects within tens of seconds without the need for support structures. This method works by projecting intensity patterns, computed via a reverse tomography algorithm, into a photocurable resin from different angles to produce a desired 3D shape when the resin reaches the polymerization threshold. Printing using incoherent light patterning has been previously demonstrated. In this work, we show that a light engine with holographic phase modulation unlocks new potential for volumetric printing. The light projection efficiency is improved by at least a factor 20 over amplitude coding with diffraction-limited resolution and its flexibility allows precise light control across the entire printing volume. We show that computer-generated holograms implemented with tiled holograms and point-spread-function shaping mitigates the speckle noise which enables the fabrication of millimetric 3D objects exhibiting negative features of 31 <i>μm</i> in less than a minute with a 40 mW light source in acrylates and scattering materials, such as soft cell-laden hydrogels, with a concentration of 0.5 million cells per mL.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"61 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56852-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Several 3D light-based printing technologies have been developed that rely on the photopolymerization of liquid resins. A recent method, so-called Tomographic Volumetric Additive Manufacturing, allows the fabrication of microscale objects within tens of seconds without the need for support structures. This method works by projecting intensity patterns, computed via a reverse tomography algorithm, into a photocurable resin from different angles to produce a desired 3D shape when the resin reaches the polymerization threshold. Printing using incoherent light patterning has been previously demonstrated. In this work, we show that a light engine with holographic phase modulation unlocks new potential for volumetric printing. The light projection efficiency is improved by at least a factor 20 over amplitude coding with diffraction-limited resolution and its flexibility allows precise light control across the entire printing volume. We show that computer-generated holograms implemented with tiled holograms and point-spread-function shaping mitigates the speckle noise which enables the fabrication of millimetric 3D objects exhibiting negative features of 31 μm in less than a minute with a 40 mW light source in acrylates and scattering materials, such as soft cell-laden hydrogels, with a concentration of 0.5 million cells per mL.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.