Yin Liu, Lei Jin, Tribhuwan Pandey, Haoye Sun, Yuzi Liu, Xun Li, Alejandro Rodriguez, Yueyin Wang, Tao Zhou, Rui Chen, Yongwen Sun, Yang Yang, Daryl C. Chrzan, Lucas Lindsay, Junqiao Wu, Jie Yao
{"title":"Anomalous thermal transport in Eshelby twisted van der Waals nanowires","authors":"Yin Liu, Lei Jin, Tribhuwan Pandey, Haoye Sun, Yuzi Liu, Xun Li, Alejandro Rodriguez, Yueyin Wang, Tao Zhou, Rui Chen, Yongwen Sun, Yang Yang, Daryl C. Chrzan, Lucas Lindsay, Junqiao Wu, Jie Yao","doi":"10.1038/s41563-024-02108-3","DOIUrl":null,"url":null,"abstract":"<p>Dislocations in van der Waals (vdW) layered nanomaterials induce strain and structural changes that substantially impact thermal transport. Understanding these effects could enable the manipulation of dislocations for improved thermoelectric and optoelectronic applications, but experimental insights remain limited. In this study, we use synthetic Eshelby twisted vdW GeS nanowires (NWs) with single screw dislocations as a model system to explore the interplay between dislocation-induced structural modifications and lattice thermal conductivity. Our measurements reveal a monoclinic structure stabilized by the dislocation, leading to a substantial drop in thermal conductivity for larger-diameter NWs (70% at room temperature), supported by first-principles calculations. Interestingly, we also find an anomalous enhancement of thermal conductivity with decreasing diameter in twisted NWs, contrary to typical trends in non-twisted GeS NWs. This is attributed to increased conductivity near the NW cores due to compressive strain around the central dislocations, and aligns with a density-functional-theory-informed core–shell model. Our results highlight the critical role of dislocations in thermal conduction, providing fundamental insights for defect and strain engineering in advanced thermal applications.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"58 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02108-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dislocations in van der Waals (vdW) layered nanomaterials induce strain and structural changes that substantially impact thermal transport. Understanding these effects could enable the manipulation of dislocations for improved thermoelectric and optoelectronic applications, but experimental insights remain limited. In this study, we use synthetic Eshelby twisted vdW GeS nanowires (NWs) with single screw dislocations as a model system to explore the interplay between dislocation-induced structural modifications and lattice thermal conductivity. Our measurements reveal a monoclinic structure stabilized by the dislocation, leading to a substantial drop in thermal conductivity for larger-diameter NWs (70% at room temperature), supported by first-principles calculations. Interestingly, we also find an anomalous enhancement of thermal conductivity with decreasing diameter in twisted NWs, contrary to typical trends in non-twisted GeS NWs. This is attributed to increased conductivity near the NW cores due to compressive strain around the central dislocations, and aligns with a density-functional-theory-informed core–shell model. Our results highlight the critical role of dislocations in thermal conduction, providing fundamental insights for defect and strain engineering in advanced thermal applications.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.