Structural insights into tecovirimat antiviral activity and poxvirus resistance

IF 20.5 1区 生物学 Q1 MICROBIOLOGY
Riccardo Vernuccio, Alejandro Martínez León, Chetan S. Poojari, Julian Buchrieser, Christopher N. Selverian, Yakin Jaleta, Annalisa Meola, Florence Guivel-Benhassine, Françoise Porrot, Ahmed Haouz, Maelenn Chevreuil, Bertrand Raynal, Jason Mercer, Etienne Simon-Loriere, Kartik Chandran, Olivier Schwartz, Jochen S. Hub, Pablo Guardado-Calvo
{"title":"Structural insights into tecovirimat antiviral activity and poxvirus resistance","authors":"Riccardo Vernuccio, Alejandro Martínez León, Chetan S. Poojari, Julian Buchrieser, Christopher N. Selverian, Yakin Jaleta, Annalisa Meola, Florence Guivel-Benhassine, Françoise Porrot, Ahmed Haouz, Maelenn Chevreuil, Bertrand Raynal, Jason Mercer, Etienne Simon-Loriere, Kartik Chandran, Olivier Schwartz, Jochen S. Hub, Pablo Guardado-Calvo","doi":"10.1038/s41564-025-01936-6","DOIUrl":null,"url":null,"abstract":"<p>Mpox is a zoonotic disease endemic to Central and West Africa. Since 2022, two human-adapted monkeypox virus (MPXV) strains have caused large outbreaks outside these regions. Tecovirimat is the most widely used drug to treat mpox. It blocks viral egress by targeting the viral phospholipase F13; however, the structural details are unknown, and mutations in the F13 gene can result in resistance against tecovirimat, raising public health concerns. Here we report the structure of an F13 homodimer using X-ray crystallography, both alone (2.1 Å) and in complex with tecovirimat (2.6 Å). Combined with molecular dynamics simulations and dimerization assays, we show that tecovirimat acts as a molecular glue that promotes dimerization of the phospholipase. Tecovirimat resistance mutations identified in clinical MPXV isolates map to the F13 dimer interface and prevent drug-induced dimerization in solution and in cells. These findings explain how tecovirimat works, allow for better monitoring of resistant MPXV strains and pave the way for developing more potent and resilient therapeutics.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"22 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-025-01936-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mpox is a zoonotic disease endemic to Central and West Africa. Since 2022, two human-adapted monkeypox virus (MPXV) strains have caused large outbreaks outside these regions. Tecovirimat is the most widely used drug to treat mpox. It blocks viral egress by targeting the viral phospholipase F13; however, the structural details are unknown, and mutations in the F13 gene can result in resistance against tecovirimat, raising public health concerns. Here we report the structure of an F13 homodimer using X-ray crystallography, both alone (2.1 Å) and in complex with tecovirimat (2.6 Å). Combined with molecular dynamics simulations and dimerization assays, we show that tecovirimat acts as a molecular glue that promotes dimerization of the phospholipase. Tecovirimat resistance mutations identified in clinical MPXV isolates map to the F13 dimer interface and prevent drug-induced dimerization in solution and in cells. These findings explain how tecovirimat works, allow for better monitoring of resistant MPXV strains and pave the way for developing more potent and resilient therapeutics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Microbiology
Nature Microbiology Immunology and Microbiology-Microbiology
CiteScore
44.40
自引率
1.10%
发文量
226
期刊介绍: Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes: Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time. Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes. Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments. Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation. In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信