In-depth analysis of 17,115 rice transcriptomes reveals extensive viral diversity in rice plants

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yu Zhu, Ali Raza, Qing Bai, Chengwu Zou, Jiangshuai Niu, Zhongxin Guo, Qingfa Wu
{"title":"In-depth analysis of 17,115 rice transcriptomes reveals extensive viral diversity in rice plants","authors":"Yu Zhu, Ali Raza, Qing Bai, Chengwu Zou, Jiangshuai Niu, Zhongxin Guo, Qingfa Wu","doi":"10.1038/s41467-025-56769-y","DOIUrl":null,"url":null,"abstract":"<p>Rice viruses seriously threaten rice cultivation and cause significant economic losses, but they have not yet been systematically identified, with only 20 rice-infecting viruses reported. Here, we perform a large-scale analysis of 17,115 RNA-seq libraries spanning 24 <i>Oryza</i> species across 51 countries. Using de novo assembly and homology-based methods, we identify 810 complete or near-complete viruses, including 276 known viruses and 534 novel viruses. Given the high divergence and atypical genome organizations of novel viruses, more than a half of them are tentatively assigned to 1 new order, 61 new families, and at least 104 new genera. Utilizing homology-independent approaches, we additionally identify 49 divergent RNA-dependent RNA polymerases (RdRPs), which are confirmed by protein structural alignment. Furthermore, we analyze the metadata of related Sequence Read Archive (SRA) libraries and estimated viral abundance in each library, leading to the screening of 427 viruses closely associated with rice plants. Overall, our study vastly expands the viral diversity in rice plants, providing insights for the prevention and control of viral disease.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56769-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rice viruses seriously threaten rice cultivation and cause significant economic losses, but they have not yet been systematically identified, with only 20 rice-infecting viruses reported. Here, we perform a large-scale analysis of 17,115 RNA-seq libraries spanning 24 Oryza species across 51 countries. Using de novo assembly and homology-based methods, we identify 810 complete or near-complete viruses, including 276 known viruses and 534 novel viruses. Given the high divergence and atypical genome organizations of novel viruses, more than a half of them are tentatively assigned to 1 new order, 61 new families, and at least 104 new genera. Utilizing homology-independent approaches, we additionally identify 49 divergent RNA-dependent RNA polymerases (RdRPs), which are confirmed by protein structural alignment. Furthermore, we analyze the metadata of related Sequence Read Archive (SRA) libraries and estimated viral abundance in each library, leading to the screening of 427 viruses closely associated with rice plants. Overall, our study vastly expands the viral diversity in rice plants, providing insights for the prevention and control of viral disease.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信