Global carbonate chemistry gradients reveal a negative feedback on ocean alkalinity enhancement

IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
N. Lehmann, L. T. Bach
{"title":"Global carbonate chemistry gradients reveal a negative feedback on ocean alkalinity enhancement","authors":"N. Lehmann, L. T. Bach","doi":"10.1038/s41561-025-01644-0","DOIUrl":null,"url":null,"abstract":"<p>Ocean alkalinity enhancement is a widely considered approach for marine CO<sub>2</sub> removal. Alkalinity enhancement sequesters atmospheric CO<sub>2</sub> by shifting the seawater carbonate equilibrium from CO<sub>2</sub> towards bicarbonate and carbonate ions. Such re-equilibration has been hypothesized to benefit calcifying organisms, whose increased calcification could strongly reduce the efficiency of alkalinity enhancement. Here we use global ocean satellite data to constrain the sensitivity of coccolithophores—an important group of calcifying phytoplankton—to natural gradients of seawater carbonate chemistry. We show that the ratio of particulate inorganic to particulate organic carbon, reflecting the balance of calcifying versus non-calcifying phytoplankton, is influenced by environmental drivers, including nutrient stoichiometry and carbon substrate within biogeochemical provinces. Across biogeochemical provinces, however, this ratio persistently correlates with carbonate chemistry through combined influences of carbon substrate availability and proton inhibition of calcification. We estimate that extreme alkalinity enhancement may promote the proliferation of coccolithophores, thereby reducing the CO<sub>2</sub> removal potential of ocean alkalinity enhancement by 2–29% by 2100. However, less extreme alkalinity enhancement may only mitigate for adverse acidification effects on coccolithophores. Our findings demonstrate the importance of considering large-scale biogeochemical feedbacks when evaluating the efficiency of ocean alkalinity enhancement.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"50 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-025-01644-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ocean alkalinity enhancement is a widely considered approach for marine CO2 removal. Alkalinity enhancement sequesters atmospheric CO2 by shifting the seawater carbonate equilibrium from CO2 towards bicarbonate and carbonate ions. Such re-equilibration has been hypothesized to benefit calcifying organisms, whose increased calcification could strongly reduce the efficiency of alkalinity enhancement. Here we use global ocean satellite data to constrain the sensitivity of coccolithophores—an important group of calcifying phytoplankton—to natural gradients of seawater carbonate chemistry. We show that the ratio of particulate inorganic to particulate organic carbon, reflecting the balance of calcifying versus non-calcifying phytoplankton, is influenced by environmental drivers, including nutrient stoichiometry and carbon substrate within biogeochemical provinces. Across biogeochemical provinces, however, this ratio persistently correlates with carbonate chemistry through combined influences of carbon substrate availability and proton inhibition of calcification. We estimate that extreme alkalinity enhancement may promote the proliferation of coccolithophores, thereby reducing the CO2 removal potential of ocean alkalinity enhancement by 2–29% by 2100. However, less extreme alkalinity enhancement may only mitigate for adverse acidification effects on coccolithophores. Our findings demonstrate the importance of considering large-scale biogeochemical feedbacks when evaluating the efficiency of ocean alkalinity enhancement.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信