{"title":"Global carbonate chemistry gradients reveal a negative feedback on ocean alkalinity enhancement","authors":"N. Lehmann, L. T. Bach","doi":"10.1038/s41561-025-01644-0","DOIUrl":null,"url":null,"abstract":"<p>Ocean alkalinity enhancement is a widely considered approach for marine CO<sub>2</sub> removal. Alkalinity enhancement sequesters atmospheric CO<sub>2</sub> by shifting the seawater carbonate equilibrium from CO<sub>2</sub> towards bicarbonate and carbonate ions. Such re-equilibration has been hypothesized to benefit calcifying organisms, whose increased calcification could strongly reduce the efficiency of alkalinity enhancement. Here we use global ocean satellite data to constrain the sensitivity of coccolithophores—an important group of calcifying phytoplankton—to natural gradients of seawater carbonate chemistry. We show that the ratio of particulate inorganic to particulate organic carbon, reflecting the balance of calcifying versus non-calcifying phytoplankton, is influenced by environmental drivers, including nutrient stoichiometry and carbon substrate within biogeochemical provinces. Across biogeochemical provinces, however, this ratio persistently correlates with carbonate chemistry through combined influences of carbon substrate availability and proton inhibition of calcification. We estimate that extreme alkalinity enhancement may promote the proliferation of coccolithophores, thereby reducing the CO<sub>2</sub> removal potential of ocean alkalinity enhancement by 2–29% by 2100. However, less extreme alkalinity enhancement may only mitigate for adverse acidification effects on coccolithophores. Our findings demonstrate the importance of considering large-scale biogeochemical feedbacks when evaluating the efficiency of ocean alkalinity enhancement.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"50 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-025-01644-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean alkalinity enhancement is a widely considered approach for marine CO2 removal. Alkalinity enhancement sequesters atmospheric CO2 by shifting the seawater carbonate equilibrium from CO2 towards bicarbonate and carbonate ions. Such re-equilibration has been hypothesized to benefit calcifying organisms, whose increased calcification could strongly reduce the efficiency of alkalinity enhancement. Here we use global ocean satellite data to constrain the sensitivity of coccolithophores—an important group of calcifying phytoplankton—to natural gradients of seawater carbonate chemistry. We show that the ratio of particulate inorganic to particulate organic carbon, reflecting the balance of calcifying versus non-calcifying phytoplankton, is influenced by environmental drivers, including nutrient stoichiometry and carbon substrate within biogeochemical provinces. Across biogeochemical provinces, however, this ratio persistently correlates with carbonate chemistry through combined influences of carbon substrate availability and proton inhibition of calcification. We estimate that extreme alkalinity enhancement may promote the proliferation of coccolithophores, thereby reducing the CO2 removal potential of ocean alkalinity enhancement by 2–29% by 2100. However, less extreme alkalinity enhancement may only mitigate for adverse acidification effects on coccolithophores. Our findings demonstrate the importance of considering large-scale biogeochemical feedbacks when evaluating the efficiency of ocean alkalinity enhancement.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.