Neuropeptide S and its receptor aggravated asthma via TFEB dependent autophagy in bronchial epithelial cells.

IF 5.8 2区 医学 Q1 Medicine
Zhixu Wang, Peng Zhao, Gen Yan, Aijuan Sun, Li Xu, Jiao Li, Xiaorun Zhai, Xiangcen Liu, Tingting Mei, Yinghua Xuan, Yunjuan Nie
{"title":"Neuropeptide S and its receptor aggravated asthma via TFEB dependent autophagy in bronchial epithelial cells.","authors":"Zhixu Wang, Peng Zhao, Gen Yan, Aijuan Sun, Li Xu, Jiao Li, Xiaorun Zhai, Xiangcen Liu, Tingting Mei, Yinghua Xuan, Yunjuan Nie","doi":"10.1186/s12931-025-03125-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Asthma is a prevalent respiratory disorder with limited treatment strategy. Neuropeptide S (NPS) is a highly conserved peptide via binding to its receptor NPSR, a susceptibility gene for asthma from genomics studies. However, little is known about the role of NPS-NPSR in the pathogenesis of asthma. This study was performed to determine the effect and underlying mechanism of NPS-NPSR on asthma.</p><p><strong>Methods: </strong>NPSR knockdown was verified to affect asthma through autophagy by transcriptome sequencing and molecular biology experiments in animal models. Silencing of transcription factor EB in a bronchial epithelial cell line and validation of NPS-NPSR activation of autophagy dependent on transcription factor EB.</p><p><strong>Results: </strong>Our results showed that NPSR expression was markedly increased in asthmatic humans and mice, mainly localized in bronchial epithelial cells. Using ovalbumin (OVA) and papain-induced asthma mouse models, NPSR-deficient mice exhibited significantly alleviated asthma, with reduced small airway lesions and inflammatory infiltration compared with wild-type mice. OVA and papain promoted TFEB-mediated autophagy with increased ATG5 and LC3 II expression, and NPS effectively regulated the activation of TFEB and autophagy. In turn, specific TFEB knockdown could restore the effect of exogenous NPS and its receptor antagonist on the autophagy and cytokines secretion in bronchial epithelial cells. Furthermore, Prkcg may be the key upstream targeting of the TFEB-autophagy pathway involved in asthma.</p><p><strong>Conclusions: </strong>NPS-NPSR exacerbated asthma by regulating the TFEB-autophagy axis in airway epithelial injury, which may be a potential target for asthma therapy.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"26 1","pages":"50"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-025-03125-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Asthma is a prevalent respiratory disorder with limited treatment strategy. Neuropeptide S (NPS) is a highly conserved peptide via binding to its receptor NPSR, a susceptibility gene for asthma from genomics studies. However, little is known about the role of NPS-NPSR in the pathogenesis of asthma. This study was performed to determine the effect and underlying mechanism of NPS-NPSR on asthma.

Methods: NPSR knockdown was verified to affect asthma through autophagy by transcriptome sequencing and molecular biology experiments in animal models. Silencing of transcription factor EB in a bronchial epithelial cell line and validation of NPS-NPSR activation of autophagy dependent on transcription factor EB.

Results: Our results showed that NPSR expression was markedly increased in asthmatic humans and mice, mainly localized in bronchial epithelial cells. Using ovalbumin (OVA) and papain-induced asthma mouse models, NPSR-deficient mice exhibited significantly alleviated asthma, with reduced small airway lesions and inflammatory infiltration compared with wild-type mice. OVA and papain promoted TFEB-mediated autophagy with increased ATG5 and LC3 II expression, and NPS effectively regulated the activation of TFEB and autophagy. In turn, specific TFEB knockdown could restore the effect of exogenous NPS and its receptor antagonist on the autophagy and cytokines secretion in bronchial epithelial cells. Furthermore, Prkcg may be the key upstream targeting of the TFEB-autophagy pathway involved in asthma.

Conclusions: NPS-NPSR exacerbated asthma by regulating the TFEB-autophagy axis in airway epithelial injury, which may be a potential target for asthma therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Respiratory Research
Respiratory Research RESPIRATORY SYSTEM-
CiteScore
9.70
自引率
1.70%
发文量
314
审稿时长
4-8 weeks
期刊介绍: Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases. As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion. Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信