Enoch Tin, Sergio Rutella, Ismat Khatri, Yoosu Na, Yongran Yan, Neil MacLean, Jayakumar Vadakekolathu, Mark D Minden, Aaron D Schimmer, JongBok Lee, Li Zhang
{"title":"SOCS1 protects acute myeloid leukemia against allogeneic T cell-mediated cytotoxicity.","authors":"Enoch Tin, Sergio Rutella, Ismat Khatri, Yoosu Na, Yongran Yan, Neil MacLean, Jayakumar Vadakekolathu, Mark D Minden, Aaron D Schimmer, JongBok Lee, Li Zhang","doi":"10.1158/2643-3230.BCD-24-0140","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the curative potential of allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia (AML), its efficacy is limited by intrinsic resistance of cancer cells to donor-derived T-cell cytotoxicity. Using a genome-wide CRISPR screen, we identified the SOCS1-JAK1-STAT1 pathway as a mediator of AML susceptibility to T cells. SOCS1 knockdown in AML cells sensitized them to killing by allogeneic T cells, whereas SOCS1 overexpression in AML cells induced resistance to T-cell anti-leukemic activity. Mechanistically, SOCS1 protected AML cells from T-cell killing by antagonizing IFNγ-JAK1-induced ICAM-1 expression. Furthermore, primary AML cells with lower SOCS1 expression correlated with better overall survival in patients, especially those with a lower exhausted CD8+ T-cell score. Thus, this study reveals SOCS1 and its downstream mediators as a potential targetable pathway to enhance T cell-based immunotherapy for AML.</p>","PeriodicalId":29944,"journal":{"name":"Blood Cancer Discovery","volume":" ","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2643-3230.BCD-24-0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the curative potential of allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia (AML), its efficacy is limited by intrinsic resistance of cancer cells to donor-derived T-cell cytotoxicity. Using a genome-wide CRISPR screen, we identified the SOCS1-JAK1-STAT1 pathway as a mediator of AML susceptibility to T cells. SOCS1 knockdown in AML cells sensitized them to killing by allogeneic T cells, whereas SOCS1 overexpression in AML cells induced resistance to T-cell anti-leukemic activity. Mechanistically, SOCS1 protected AML cells from T-cell killing by antagonizing IFNγ-JAK1-induced ICAM-1 expression. Furthermore, primary AML cells with lower SOCS1 expression correlated with better overall survival in patients, especially those with a lower exhausted CD8+ T-cell score. Thus, this study reveals SOCS1 and its downstream mediators as a potential targetable pathway to enhance T cell-based immunotherapy for AML.
期刊介绍:
The journal Blood Cancer Discovery publishes high-quality Research Articles and Briefs that focus on major advances in basic, translational, and clinical research of leukemia, lymphoma, myeloma, and associated diseases. The topics covered include molecular and cellular features of pathogenesis, therapy response and relapse, transcriptional circuits, stem cells, differentiation, microenvironment, metabolism, immunity, mutagenesis, and clonal evolution. These subjects are investigated in both animal disease models and high-dimensional clinical data landscapes.
The journal also welcomes submissions on new pharmacological, biological, and living cell therapies, as well as new diagnostic tools. They are interested in prognostic, diagnostic, and pharmacodynamic biomarkers, and computational and machine learning approaches to personalized medicine. The scope of submissions ranges from preclinical proof of concept to clinical trials and real-world evidence.
Blood Cancer Discovery serves as a forum for diverse ideas that shape future research directions in hematooncology. In addition to Research Articles and Briefs, the journal also publishes Reviews, Perspectives, and Commentaries on topics of broad interest in the field.