SOCS1 protects acute myeloid leukemia against allogeneic T cell-mediated cytotoxicity.

IF 11.5 Q1 HEMATOLOGY
Enoch Tin, Sergio Rutella, Ismat Khatri, Yoosu Na, Yongran Yan, Neil MacLean, Jayakumar Vadakekolathu, Mark D Minden, Aaron D Schimmer, JongBok Lee, Li Zhang
{"title":"SOCS1 protects acute myeloid leukemia against allogeneic T cell-mediated cytotoxicity.","authors":"Enoch Tin, Sergio Rutella, Ismat Khatri, Yoosu Na, Yongran Yan, Neil MacLean, Jayakumar Vadakekolathu, Mark D Minden, Aaron D Schimmer, JongBok Lee, Li Zhang","doi":"10.1158/2643-3230.BCD-24-0140","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the curative potential of allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia (AML), its efficacy is limited by intrinsic resistance of cancer cells to donor-derived T-cell cytotoxicity. Using a genome-wide CRISPR screen, we identified the SOCS1-JAK1-STAT1 pathway as a mediator of AML susceptibility to T cells. SOCS1 knockdown in AML cells sensitized them to killing by allogeneic T cells, whereas SOCS1 overexpression in AML cells induced resistance to T-cell anti-leukemic activity. Mechanistically, SOCS1 protected AML cells from T-cell killing by antagonizing IFNγ-JAK1-induced ICAM-1 expression. Furthermore, primary AML cells with lower SOCS1 expression correlated with better overall survival in patients, especially those with a lower exhausted CD8+ T-cell score. Thus, this study reveals SOCS1 and its downstream mediators as a potential targetable pathway to enhance T cell-based immunotherapy for AML.</p>","PeriodicalId":29944,"journal":{"name":"Blood Cancer Discovery","volume":" ","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2643-3230.BCD-24-0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the curative potential of allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia (AML), its efficacy is limited by intrinsic resistance of cancer cells to donor-derived T-cell cytotoxicity. Using a genome-wide CRISPR screen, we identified the SOCS1-JAK1-STAT1 pathway as a mediator of AML susceptibility to T cells. SOCS1 knockdown in AML cells sensitized them to killing by allogeneic T cells, whereas SOCS1 overexpression in AML cells induced resistance to T-cell anti-leukemic activity. Mechanistically, SOCS1 protected AML cells from T-cell killing by antagonizing IFNγ-JAK1-induced ICAM-1 expression. Furthermore, primary AML cells with lower SOCS1 expression correlated with better overall survival in patients, especially those with a lower exhausted CD8+ T-cell score. Thus, this study reveals SOCS1 and its downstream mediators as a potential targetable pathway to enhance T cell-based immunotherapy for AML.

SOCS1 可保护急性髓性白血病免受异体 T 细胞介导的细胞毒性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
1.80%
发文量
139
期刊介绍: The journal Blood Cancer Discovery publishes high-quality Research Articles and Briefs that focus on major advances in basic, translational, and clinical research of leukemia, lymphoma, myeloma, and associated diseases. The topics covered include molecular and cellular features of pathogenesis, therapy response and relapse, transcriptional circuits, stem cells, differentiation, microenvironment, metabolism, immunity, mutagenesis, and clonal evolution. These subjects are investigated in both animal disease models and high-dimensional clinical data landscapes. The journal also welcomes submissions on new pharmacological, biological, and living cell therapies, as well as new diagnostic tools. They are interested in prognostic, diagnostic, and pharmacodynamic biomarkers, and computational and machine learning approaches to personalized medicine. The scope of submissions ranges from preclinical proof of concept to clinical trials and real-world evidence. Blood Cancer Discovery serves as a forum for diverse ideas that shape future research directions in hematooncology. In addition to Research Articles and Briefs, the journal also publishes Reviews, Perspectives, and Commentaries on topics of broad interest in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信