Statistical considerations for evaluating treatment effect under various non-proportional hazard scenarios.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Xinyu Zhang, Erich J Greene, Ondrej Blaha, Wei Wei
{"title":"Statistical considerations for evaluating treatment effect under various non-proportional hazard scenarios.","authors":"Xinyu Zhang, Erich J Greene, Ondrej Blaha, Wei Wei","doi":"10.1177/09622802241313297","DOIUrl":null,"url":null,"abstract":"<p><p>We conducted a systematic comparison of statistical methods used for the analysis of time-to-event outcomes under various proportional and non-proportional hazard (NPH) scenarios. Our study used data from recently published oncology trials to compare the Log-rank test, still by far the most widely used option, against some available alternatives, including the MaxCombo test, the Restricted Mean Survival Time difference test, the Generalized Gamma model and the Generalized F model. Power, type I error rate, and time-dependent bias with respect to the survival probability and median survival time were used to evaluate and compare the performance of these methods. In addition to the real data, we simulated three hypothetical scenarios with crossing hazards chosen so that the early and late effects \"cancel out\" and used them to evaluate the ability of the aforementioned methods to detect time-specific and overall treatment effects. We implemented novel metrics for assessing the time-dependent bias in treatment effect estimates to provide a more comprehensive evaluation in NPH scenarios. Recommendations under each NPH scenario are provided by examining the type I error rate, power, and time-dependent bias associated with each statistical approach.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241313297"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241313297","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

We conducted a systematic comparison of statistical methods used for the analysis of time-to-event outcomes under various proportional and non-proportional hazard (NPH) scenarios. Our study used data from recently published oncology trials to compare the Log-rank test, still by far the most widely used option, against some available alternatives, including the MaxCombo test, the Restricted Mean Survival Time difference test, the Generalized Gamma model and the Generalized F model. Power, type I error rate, and time-dependent bias with respect to the survival probability and median survival time were used to evaluate and compare the performance of these methods. In addition to the real data, we simulated three hypothetical scenarios with crossing hazards chosen so that the early and late effects "cancel out" and used them to evaluate the ability of the aforementioned methods to detect time-specific and overall treatment effects. We implemented novel metrics for assessing the time-dependent bias in treatment effect estimates to provide a more comprehensive evaluation in NPH scenarios. Recommendations under each NPH scenario are provided by examining the type I error rate, power, and time-dependent bias associated with each statistical approach.

在各种非比例危险情景下评估治疗效果的统计考虑。
我们对各种比例和非比例风险(NPH)情景下用于分析事件时间结果的统计方法进行了系统比较。我们的研究使用了最近发表的肿瘤试验数据,将Log-rank检验(迄今为止仍是最广泛使用的选择)与一些可用的替代方法(包括MaxCombo检验、限制平均生存时间差异检验、广义Gamma模型和广义F模型)进行了比较。使用与生存概率和中位生存时间相关的功率、I型错误率和时间依赖偏差来评估和比较这些方法的性能。除了真实数据外,我们还模拟了三种假设情景,选择了交叉危害,使早期和晚期效应“抵消”,并使用它们来评估上述方法检测时间特异性和整体治疗效果的能力。我们实施了新的指标来评估治疗效果估计中的时间依赖偏差,以便在NPH情况下提供更全面的评估。通过检查与每种统计方法相关的I型错误率、功率和时间依赖偏差,提供了每种NPH场景下的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信