Kinetics of Amyloid Oligomer Formation.

IF 10.4 1区 生物学 Q1 BIOPHYSICS
Jiapeng Wei, Georg Meisl, Alexander J Dear, Thomas C T Michaels, Tuomas P J Knowles
{"title":"Kinetics of Amyloid Oligomer Formation.","authors":"Jiapeng Wei, Georg Meisl, Alexander J Dear, Thomas C T Michaels, Tuomas P J Knowles","doi":"10.1146/annurev-biophys-080124-122953","DOIUrl":null,"url":null,"abstract":"<p><p>Low-molecular-weight oligomers formed from amyloidogenic peptides and proteins have been identified as key cytotoxins across a range of neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Developing therapeutic strategies that target oligomers is therefore emerging as a promising approach for combating protein misfolding diseases. As such, there is a great need to understand the fundamental properties, dynamics, and mechanisms associated with oligomer formation. In this review, we discuss how chemical kinetics provides a powerful tool for studying these systems. We review the chemical kinetics approach to determining the underlying molecular pathways of protein aggregation and discuss its applications to oligomer formation and dynamics. We discuss how this approach can reveal detailed mechanisms of primary and secondary oligomer formation, including the role of interfaces in these processes. We further use this framework to describe the processes of oligomer conversion and dissociation, and highlight the distinction between on-pathway and off-pathway oligomers. Furthermore, we showcase on the basis of experimental data the diversity of pathways leading to oligomer formation in various in vitro and in silico systems. Finally, using the lens of the chemical kinetics framework, we look at the current oligomer inhibitor strategies both in vitro and in vivo.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-080124-122953","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Low-molecular-weight oligomers formed from amyloidogenic peptides and proteins have been identified as key cytotoxins across a range of neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Developing therapeutic strategies that target oligomers is therefore emerging as a promising approach for combating protein misfolding diseases. As such, there is a great need to understand the fundamental properties, dynamics, and mechanisms associated with oligomer formation. In this review, we discuss how chemical kinetics provides a powerful tool for studying these systems. We review the chemical kinetics approach to determining the underlying molecular pathways of protein aggregation and discuss its applications to oligomer formation and dynamics. We discuss how this approach can reveal detailed mechanisms of primary and secondary oligomer formation, including the role of interfaces in these processes. We further use this framework to describe the processes of oligomer conversion and dissociation, and highlight the distinction between on-pathway and off-pathway oligomers. Furthermore, we showcase on the basis of experimental data the diversity of pathways leading to oligomer formation in various in vitro and in silico systems. Finally, using the lens of the chemical kinetics framework, we look at the current oligomer inhibitor strategies both in vitro and in vivo.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信