Causal survival embeddings: Non-parametric counterfactual inference under right-censoring.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Carlos García Meixide, Marcos Matabuena
{"title":"Causal survival embeddings: Non-parametric counterfactual inference under right-censoring.","authors":"Carlos García Meixide, Marcos Matabuena","doi":"10.1177/09622802241311455","DOIUrl":null,"url":null,"abstract":"<p><p>Counterfactual inference at the distributional level presents new challenges with censored targets, especially in modern healthcare problems. To mitigate selection bias in this context, we exploit the intrinsic structure of reproducing kernel Hilbert spaces (RKHS) harnessing the notion of kernel mean embedding. This enables the development of a non-parametric estimator of counterfactual survival functions. We provide rigorous theoretical guarantees regarding consistency and convergence rates of our new estimator under general hypotheses related to smoothness of the underlying RKHS. We illustrate the practical viability of our methodology through extensive simulations and a relevant case study: The SPRINT trial. Our estimatort presents a distinct perspective compared to existing methods within the literature, which often rely on semi-parametric approaches and confront limitations in causal interpretations of model parameters.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241311455"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241311455","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Counterfactual inference at the distributional level presents new challenges with censored targets, especially in modern healthcare problems. To mitigate selection bias in this context, we exploit the intrinsic structure of reproducing kernel Hilbert spaces (RKHS) harnessing the notion of kernel mean embedding. This enables the development of a non-parametric estimator of counterfactual survival functions. We provide rigorous theoretical guarantees regarding consistency and convergence rates of our new estimator under general hypotheses related to smoothness of the underlying RKHS. We illustrate the practical viability of our methodology through extensive simulations and a relevant case study: The SPRINT trial. Our estimatort presents a distinct perspective compared to existing methods within the literature, which often rely on semi-parametric approaches and confront limitations in causal interpretations of model parameters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信