Dominika Kołodziej-Sobczak, Łukasz Sobczak, Wojciech Płaziński, Adrianna Sławińska-Brych, Magdalena Mizerska-Kowalska, Klaudia Hołub, Barbara Zdzisińska, Karol Jaroch, Barbara Bojko, Krzysztof Z Łączkowski
{"title":"Design, synthesis, molecular docking and anticancer activity evaluation of methyl salicylate based thiazoles as PTP1B inhibitors.","authors":"Dominika Kołodziej-Sobczak, Łukasz Sobczak, Wojciech Płaziński, Adrianna Sławińska-Brych, Magdalena Mizerska-Kowalska, Klaudia Hołub, Barbara Zdzisińska, Karol Jaroch, Barbara Bojko, Krzysztof Z Łączkowski","doi":"10.1038/s41598-025-88038-9","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a rational synthesis of 14 innovative methyl salicylate based thiazole (MSBT) derivatives, designed as protein tyrosine phosphatase 1B (PTP1B) inhibitors with potent anticancer activity. Enzyme inhibition studies were performed for all compounds. In addition, molecular docking simulations and assessment of antiproliferative activity were performed for the most active of the lot. For antiproliferative studies, the cell lines of breast cancer (T47D) and non-small-cell lung carcinoma (A549), as well as healthy control of human skin fibroblasts (HSF), were used. As a result, 3 compounds were found to inhibit the PTP1B enzyme in submicromolar concentrations: 3j (IC<sub>50</sub> = 0.51 ± 0.15 µM), 3f. (IC<sub>50</sub> = 0.66 ± 0.38 µM) and 3d (IC<sub>50</sub> = 0.93 ± 0.51 µM), all surpassing the reference inhibitor as much as sixfold (IC<sub>50</sub> = 3.23 ± 0.85 µM). Moreover, compound 3j was found to be highly selective towards T47D cancer cells. The cellular mechanism of compound 3j action was associated with the inhibition of DNA replication via blocking the S phase of interphase and induction of apoptosis. Also, molecular docking simulations made for compound 3j revealed continuous interactions between the molecule and the catalytic site, as well as with all the loops involved in the catalytic activity of the protein. Therefore, the new group of MSBT derivatives offers great promise for safe and effective anticancer therapy.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4892"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811031/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88038-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a rational synthesis of 14 innovative methyl salicylate based thiazole (MSBT) derivatives, designed as protein tyrosine phosphatase 1B (PTP1B) inhibitors with potent anticancer activity. Enzyme inhibition studies were performed for all compounds. In addition, molecular docking simulations and assessment of antiproliferative activity were performed for the most active of the lot. For antiproliferative studies, the cell lines of breast cancer (T47D) and non-small-cell lung carcinoma (A549), as well as healthy control of human skin fibroblasts (HSF), were used. As a result, 3 compounds were found to inhibit the PTP1B enzyme in submicromolar concentrations: 3j (IC50 = 0.51 ± 0.15 µM), 3f. (IC50 = 0.66 ± 0.38 µM) and 3d (IC50 = 0.93 ± 0.51 µM), all surpassing the reference inhibitor as much as sixfold (IC50 = 3.23 ± 0.85 µM). Moreover, compound 3j was found to be highly selective towards T47D cancer cells. The cellular mechanism of compound 3j action was associated with the inhibition of DNA replication via blocking the S phase of interphase and induction of apoptosis. Also, molecular docking simulations made for compound 3j revealed continuous interactions between the molecule and the catalytic site, as well as with all the loops involved in the catalytic activity of the protein. Therefore, the new group of MSBT derivatives offers great promise for safe and effective anticancer therapy.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.