A K L Wezenaar, U Pandey, F Keramati, M Hernandez-Roca, P Brazda, M Barrera Román, A Cleven, F Karaiskaki, T Aarts-Riemens, S de Blank, P Hernandez-Lopez, S Heijhuurs, A Alemany, J Kuball, Z Sebestyen, J F Dekkers, H G Stunnenberg, M Alieva, A C Rios
{"title":"Mapping T cell dynamics to molecular profiles through behavior-guided transcriptomics.","authors":"A K L Wezenaar, U Pandey, F Keramati, M Hernandez-Roca, P Brazda, M Barrera Román, A Cleven, F Karaiskaki, T Aarts-Riemens, S de Blank, P Hernandez-Lopez, S Heijhuurs, A Alemany, J Kuball, Z Sebestyen, J F Dekkers, H G Stunnenberg, M Alieva, A C Rios","doi":"10.1038/s41596-024-01126-4","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of cellular immunotherapy for cancer treatment has led to the utilization of immune oncology cocultures to simulate T cell interactions with cancer cells for assessing their antitumor response. Previously, we developed BEHAV3D, a three-dimensional live imaging platform of patient-derived tumor organoid (PDO) and engineered T cell cocultures, that analyzes T cells' dynamics to gain crucial insights into their behavior during tumor targeting. However, live imaging alone cannot determine the molecular drivers behind these behaviors. Conversely, single-cell RNA sequencing (scRNA-seq) allows researchers to analyze the transcriptional profiles of individual cells but lacks spatio-temporal resolution. Here we present an extension to the BEHAV3D protocol, called Behavior-Guided Transcriptomics (BGT), for integration of T cell live imaging data with single-cell transcriptomics, enabling analysis of gene programs linked to dynamic T cell behaviors. BGT uses live imaging data processed by BEHAV3D to guide the experimental setup for cell separation based on their PDO engagement levels subsequently followed by fluorescence-activated cell sorting and scRNA-seq. It then integrates in silico simulations of these experiments to computationally infer T cell behavior on scRNA-seq data, uncovering new biomarkers for both highly functional and ineffective T cells, that could be exploited to enhance therapeutic efficacy. The protocol, designed for users with fundamental cell culture, imaging and programming skills, is readily adaptable to diverse coculture settings and takes one month to perform.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01126-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of cellular immunotherapy for cancer treatment has led to the utilization of immune oncology cocultures to simulate T cell interactions with cancer cells for assessing their antitumor response. Previously, we developed BEHAV3D, a three-dimensional live imaging platform of patient-derived tumor organoid (PDO) and engineered T cell cocultures, that analyzes T cells' dynamics to gain crucial insights into their behavior during tumor targeting. However, live imaging alone cannot determine the molecular drivers behind these behaviors. Conversely, single-cell RNA sequencing (scRNA-seq) allows researchers to analyze the transcriptional profiles of individual cells but lacks spatio-temporal resolution. Here we present an extension to the BEHAV3D protocol, called Behavior-Guided Transcriptomics (BGT), for integration of T cell live imaging data with single-cell transcriptomics, enabling analysis of gene programs linked to dynamic T cell behaviors. BGT uses live imaging data processed by BEHAV3D to guide the experimental setup for cell separation based on their PDO engagement levels subsequently followed by fluorescence-activated cell sorting and scRNA-seq. It then integrates in silico simulations of these experiments to computationally infer T cell behavior on scRNA-seq data, uncovering new biomarkers for both highly functional and ineffective T cells, that could be exploited to enhance therapeutic efficacy. The protocol, designed for users with fundamental cell culture, imaging and programming skills, is readily adaptable to diverse coculture settings and takes one month to perform.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.