Enigmatic intractable Epilepsy patients have antibodies that bind glutamate receptor peptides, kill neurons, damage the brain, and cause Generalized Tonic Clonic Seizures.

IF 3.2 4区 医学 Q2 CLINICAL NEUROLOGY
Rhoda Olowe Taiwo, Hadassa Sterm Goldberg, Nili Ilouz, Prince Kumar Singh, Tawfeeq Shekh-Ahmad, Mia Levite
{"title":"Enigmatic intractable Epilepsy patients have antibodies that bind glutamate receptor peptides, kill neurons, damage the brain, and cause Generalized Tonic Clonic Seizures.","authors":"Rhoda Olowe Taiwo, Hadassa Sterm Goldberg, Nili Ilouz, Prince Kumar Singh, Tawfeeq Shekh-Ahmad, Mia Levite","doi":"10.1007/s00702-024-02855-2","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy affects 1-2% of the world population, is enigmatic in 30% of cases, and is often intractable, unresponsive to antiepileptic drugs, and accompanied by cognitive, psychiatric and behavioral problems. Tests for Autoimmune Epilepsy are not performed routinely, and limited to passive diagnosis of known autoimmune antibodies, without essential functional tests to reveal active pathogenic antibodies. We investigated two young Epilepsy patients with different Epilepsy characteristics, repeated intractable seizures, and enigmatic etiology. We suspected Autoimmune Epilepsy. We found that both patients have elevated IgG antibodies, and three types of glutamate receptor antibodies, to: AMPA-GluR3B, NMDA-NR1 and NMDA-NR2 peptides. In contrast, they lack autoantibodies to: LGI1, CASPR2, GABA-RB1, Amphiphysin, CV2, PNMA1, Ri, Yo, Hu, Recoverin, Soxi and Titin. IgG antibodies of both patients bound and killed human neural cells In vitro. Moreover, In vivo video EEG studies in naive rats revealed that patient's IgG antibodies, infused continually into rat brain, bound neural cells in the hippocampus and cortex, caused neural loss in these brain regions, and induced recurrent Generalized Tonic Clonic Seizures. We assume they can do so also in the patient's brain. This is the first model of human Autoimmune Epilepsy in rats. It can serve for discovery of patient's pathogenic antibodies, and drug development. Tests for autoimmune antibodies that bind glutamate receptor peptides, and functional diagnostic tests, are obligatory in all enigmatic intractable Epilepsy patients. Current diagnosis of Autoimmune Epilepsy is insufficient! If pathogenic antibodies are found, intractable patients must receive available, suitable and potentially life-changing immunotherapies for Autoimmune Epilepsy.</p>","PeriodicalId":16579,"journal":{"name":"Journal of Neural Transmission","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00702-024-02855-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy affects 1-2% of the world population, is enigmatic in 30% of cases, and is often intractable, unresponsive to antiepileptic drugs, and accompanied by cognitive, psychiatric and behavioral problems. Tests for Autoimmune Epilepsy are not performed routinely, and limited to passive diagnosis of known autoimmune antibodies, without essential functional tests to reveal active pathogenic antibodies. We investigated two young Epilepsy patients with different Epilepsy characteristics, repeated intractable seizures, and enigmatic etiology. We suspected Autoimmune Epilepsy. We found that both patients have elevated IgG antibodies, and three types of glutamate receptor antibodies, to: AMPA-GluR3B, NMDA-NR1 and NMDA-NR2 peptides. In contrast, they lack autoantibodies to: LGI1, CASPR2, GABA-RB1, Amphiphysin, CV2, PNMA1, Ri, Yo, Hu, Recoverin, Soxi and Titin. IgG antibodies of both patients bound and killed human neural cells In vitro. Moreover, In vivo video EEG studies in naive rats revealed that patient's IgG antibodies, infused continually into rat brain, bound neural cells in the hippocampus and cortex, caused neural loss in these brain regions, and induced recurrent Generalized Tonic Clonic Seizures. We assume they can do so also in the patient's brain. This is the first model of human Autoimmune Epilepsy in rats. It can serve for discovery of patient's pathogenic antibodies, and drug development. Tests for autoimmune antibodies that bind glutamate receptor peptides, and functional diagnostic tests, are obligatory in all enigmatic intractable Epilepsy patients. Current diagnosis of Autoimmune Epilepsy is insufficient! If pathogenic antibodies are found, intractable patients must receive available, suitable and potentially life-changing immunotherapies for Autoimmune Epilepsy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neural Transmission
Journal of Neural Transmission 医学-临床神经学
CiteScore
7.20
自引率
3.00%
发文量
112
审稿时长
2 months
期刊介绍: The investigation of basic mechanisms involved in the pathogenesis of neurological and psychiatric disorders has undoubtedly deepened our knowledge of these types of disorders. The impact of basic neurosciences on the understanding of the pathophysiology of the brain will further increase due to important developments such as the emergence of more specific psychoactive compounds and new technologies. The Journal of Neural Transmission aims to establish an interface between basic sciences and clinical neurology and psychiatry. It intends to put a special emphasis on translational publications of the newest developments in the field from all disciplines of the neural sciences that relate to a better understanding and treatment of neurological and psychiatric disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信