Guilin Chen, Jing Gan, Fan Wu, Zengxian Zhou, Zikun Duan, Ke Zhang, Songxue Wang, Hua Jin, Yulin Li, Chi Zhang, Zhuofeng Lin
{"title":"Scpep1 inhibition attenuates myocardial infarction-induced dysfunction by improving mitochondrial bioenergetics.","authors":"Guilin Chen, Jing Gan, Fan Wu, Zengxian Zhou, Zikun Duan, Ke Zhang, Songxue Wang, Hua Jin, Yulin Li, Chi Zhang, Zhuofeng Lin","doi":"10.1093/eurheartj/ehaf032","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Myocardial infarction (MI) is an ischaemic cardiovascular disease associated with increased morbidity and mortality. Previous studies have suggested that serine carboxypeptidase 1 (Scpep1) is involved in vascular diseases; however, its role in cardiac diseases remains unclear. This study aims to explore the role of Scpep1 in regulating cardiac homeostasis during MI.</p><p><strong>Methods: </strong>The impact of Scpep1 deficiency or cardiac-specific knock-down and Scpep1 overexpression on heart function was evaluated in mice with MI. Its downstream functional mediators of Scpep1 were elucidated using proteomic analysis and confirmed by employing loss- and gain-of-function strategies.</p><p><strong>Results: </strong>Circulating and cardiac Scpep1 levels were up-regulated in mice with MI. Genetic ablation or cardiac-specific knock-down of Scpep1 alleviated MI-induced cardiac dysfunction and damage in mice. In contrast, cardiac-specific Scpep1 overexpression aggravated these adverse effects. Mechanistically, Scpep1 exacerbated MI-induced cardiac dysfunction and damage by impaired mitochondrial bioenergetics via binding to Pex3 to promote its degradation, ultimately contributing to mitochondrial fission and apoptosis. Moreover, the expressional profiles of Scpep1 in plasma samples and heart tissues of patients with MI or ischaemic cardiomyopathy were in line with those observed in the mouse models. In addition, pharmaceutical inhibition of Scpep1 notably improved MI-induced cardiac dysfunction and damage by improving mitochondrial fragmentation and bioenergetics post-MI.</p><p><strong>Conclusions: </strong>Scpep1 deficiency mitigates MI by improving Pex3-mediated mitochondrial fission and subsequent cardiomyocyte apoptosis. Scpep1 constitutes a potential therapeutic target for attenuating MI.</p>","PeriodicalId":11976,"journal":{"name":"European Heart Journal","volume":" ","pages":""},"PeriodicalIF":37.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/eurheartj/ehaf032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Myocardial infarction (MI) is an ischaemic cardiovascular disease associated with increased morbidity and mortality. Previous studies have suggested that serine carboxypeptidase 1 (Scpep1) is involved in vascular diseases; however, its role in cardiac diseases remains unclear. This study aims to explore the role of Scpep1 in regulating cardiac homeostasis during MI.
Methods: The impact of Scpep1 deficiency or cardiac-specific knock-down and Scpep1 overexpression on heart function was evaluated in mice with MI. Its downstream functional mediators of Scpep1 were elucidated using proteomic analysis and confirmed by employing loss- and gain-of-function strategies.
Results: Circulating and cardiac Scpep1 levels were up-regulated in mice with MI. Genetic ablation or cardiac-specific knock-down of Scpep1 alleviated MI-induced cardiac dysfunction and damage in mice. In contrast, cardiac-specific Scpep1 overexpression aggravated these adverse effects. Mechanistically, Scpep1 exacerbated MI-induced cardiac dysfunction and damage by impaired mitochondrial bioenergetics via binding to Pex3 to promote its degradation, ultimately contributing to mitochondrial fission and apoptosis. Moreover, the expressional profiles of Scpep1 in plasma samples and heart tissues of patients with MI or ischaemic cardiomyopathy were in line with those observed in the mouse models. In addition, pharmaceutical inhibition of Scpep1 notably improved MI-induced cardiac dysfunction and damage by improving mitochondrial fragmentation and bioenergetics post-MI.
Conclusions: Scpep1 deficiency mitigates MI by improving Pex3-mediated mitochondrial fission and subsequent cardiomyocyte apoptosis. Scpep1 constitutes a potential therapeutic target for attenuating MI.
期刊介绍:
The European Heart Journal is a renowned international journal that focuses on cardiovascular medicine. It is published weekly and is the official journal of the European Society of Cardiology. This peer-reviewed journal is committed to publishing high-quality clinical and scientific material pertaining to all aspects of cardiovascular medicine. It covers a diverse range of topics including research findings, technical evaluations, and reviews. Moreover, the journal serves as a platform for the exchange of information and discussions on various aspects of cardiovascular medicine, including educational matters.
In addition to original papers on cardiovascular medicine and surgery, the European Heart Journal also presents reviews, clinical perspectives, ESC Guidelines, and editorial articles that highlight recent advancements in cardiology. Additionally, the journal actively encourages readers to share their thoughts and opinions through correspondence.