Yilin Zhang, Deyu Ning, Jiachun Nie, Xiaoyong Hou, Wenze Li, Zhen Gan, Yishan Lu
{"title":"Evaluation of protective immune response of live-attenuated candidate vaccines ΔcpxA and ΔcpxR against Vibrio alginolyticus in pearl gentian grouper.","authors":"Yilin Zhang, Deyu Ning, Jiachun Nie, Xiaoyong Hou, Wenze Li, Zhen Gan, Yishan Lu","doi":"10.1016/j.fsi.2025.110183","DOIUrl":null,"url":null,"abstract":"<p><p>The grouper farming industry was severely influenced by vibriosis. In this study, we developed two live-attenuated vaccine (LAV) candidates against Vibrio alginolyticus infection in pearl gentian groupers using cpxA or cpxR mutant strains of V. alginolyticus (ΔcpxA and ΔcpxR). Groupers were administrated with ΔcpxA and ΔcpxR at the dose of 1.0 × 10<sup>4</sup> CFU/fish (safety dose) to evaluate the immune protect effect of LAV. The increasing median lethal dose (LD<sub>50</sub>) of ΔcpxA and ΔcpxR indicated the decreased virulence of bacteria to groupers. Our results suggested that two LAVs achieved over 70% relative percent survival (RPS) after groupers were challenged by V. alginolyticus on 14 days post-immunization. The immune protection was mainly attributed to the up-regulation of immune-related gene expression (IL-6, IL-12, TNF-α, TLR2, TLR5S, CD4, MHC-Iα, IFN-γ2 and NF-κB), the higher activities of catalase (CAT), lysozyme (LZM), superoxide dismutase (SOD), and the increasing production of total protein (TP) in serum. The research indicated that the vaccination of fish with ΔcpxA and ΔcpxR can induce the innate and acquired immunity and survival rate of groupers after bacterial infection, so they can be considered as the promising candidates of vaccine for grouper industry.</p>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":" ","pages":"110183"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fsi.2025.110183","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The grouper farming industry was severely influenced by vibriosis. In this study, we developed two live-attenuated vaccine (LAV) candidates against Vibrio alginolyticus infection in pearl gentian groupers using cpxA or cpxR mutant strains of V. alginolyticus (ΔcpxA and ΔcpxR). Groupers were administrated with ΔcpxA and ΔcpxR at the dose of 1.0 × 104 CFU/fish (safety dose) to evaluate the immune protect effect of LAV. The increasing median lethal dose (LD50) of ΔcpxA and ΔcpxR indicated the decreased virulence of bacteria to groupers. Our results suggested that two LAVs achieved over 70% relative percent survival (RPS) after groupers were challenged by V. alginolyticus on 14 days post-immunization. The immune protection was mainly attributed to the up-regulation of immune-related gene expression (IL-6, IL-12, TNF-α, TLR2, TLR5S, CD4, MHC-Iα, IFN-γ2 and NF-κB), the higher activities of catalase (CAT), lysozyme (LZM), superoxide dismutase (SOD), and the increasing production of total protein (TP) in serum. The research indicated that the vaccination of fish with ΔcpxA and ΔcpxR can induce the innate and acquired immunity and survival rate of groupers after bacterial infection, so they can be considered as the promising candidates of vaccine for grouper industry.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.