{"title":"BAHD acyltransferase from dragon fruit enables production of phyllocactin in engineered yeast.","authors":"Christiane Glitz, Jane Dannow Dyekjær, Sophia Mattitsch, Mahsa Babaei, Irina Borodina","doi":"10.1093/femsyr/foae041","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial fermentation can provide a sustainable and cost-effective alternative to traditional plant extraction to produce natural food colours. Betalains are a class of yellow to red water-soluble pigments. Even though over 80 betalain variants are known, betanin is the only betalain available as a food colourant on the market. Many variants are acylated, which can enhance their stability and change the hue, but very few acyltransferases responsible for the acylation are known. Therefore, we mined the transcriptomes of Celosia argentea var. cristata and Hylocereus polyrhizus for BAHD acyltransferases, enzymes likely involved in betalain acylation. In vivo screening of the enzymes in betanin-producing Saccharomyces cerevisiae revealed that the acyltransferase HpBAHD3 from H. polyrhizus malonylates betanin, forming phyllocactin (6'-O-malonyl-betanin). This is the first identification of a BAHD acyltransferase involved in betalain biosynthesis. Expression of HpBAHD3 in a Yarrowia lipolytica strain engineered for high betanin production led to near-complete conversion of betanin to phyllocactin. In fed-batch fermentation, the strain produced 1.95 ± 0.024 g/L phyllocactin in 60 h. This study expands the range of natural food colourants produced through microbial fermentation and contributes to elucidating the biosynthesis pathway of acylated betalains.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial fermentation can provide a sustainable and cost-effective alternative to traditional plant extraction to produce natural food colours. Betalains are a class of yellow to red water-soluble pigments. Even though over 80 betalain variants are known, betanin is the only betalain available as a food colourant on the market. Many variants are acylated, which can enhance their stability and change the hue, but very few acyltransferases responsible for the acylation are known. Therefore, we mined the transcriptomes of Celosia argentea var. cristata and Hylocereus polyrhizus for BAHD acyltransferases, enzymes likely involved in betalain acylation. In vivo screening of the enzymes in betanin-producing Saccharomyces cerevisiae revealed that the acyltransferase HpBAHD3 from H. polyrhizus malonylates betanin, forming phyllocactin (6'-O-malonyl-betanin). This is the first identification of a BAHD acyltransferase involved in betalain biosynthesis. Expression of HpBAHD3 in a Yarrowia lipolytica strain engineered for high betanin production led to near-complete conversion of betanin to phyllocactin. In fed-batch fermentation, the strain produced 1.95 ± 0.024 g/L phyllocactin in 60 h. This study expands the range of natural food colourants produced through microbial fermentation and contributes to elucidating the biosynthesis pathway of acylated betalains.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.