{"title":"Prediction of Multimorbidity Network Evolution in Middle-Aged and Elderly Population Based on CE-GCN.","authors":"Yushi Che, Yiqiao Wang","doi":"10.1007/s12539-024-00685-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>With the evolving disease spectrum, chronic diseases have emerged as a primary burden and a leading cause of mortality. Due to the aging population and the nature of chronic illnesses, patients often suffer from multimorbidity. Predicting the likelihood of these patients developing specific diseases in the future based on their current health status and age factors is a crucial task in multimorbidity research.</p><p><strong>Methods: </strong>We propose an algorithm, CE-GCN, which integrates age sequence and embeds Graph Convolutional Network (GCN) into Gated Recurrent Unit (GRU), utilizing the topological feature of network common neighbors to predict links in dynamic complex networks. First, we constructed a disease evolution network spanning from ages 45 to 90 years old using disease information from 3333 patients. Then, we introduced an innovative approach for link prediction aimed at uncovering relationships between various diseases. This method takes into account patients' age to construct the evolutionary structure of the disease network, thereby predicting the connections between chronic diseases.</p><p><strong>Results: </strong>Results from experiments conducted on real networks indicate that our model surpasses others regarding both MRR and MAP. The proposed method accurately reveals associations between diseases and effectively captures future disease risks.</p><p><strong>Conclusion: </strong>Our model can serve as an objective and convenient computer-aided tool to identify hidden relationships between diseases in order to assist healthcare professionals in taking early disease interventions, which can substantially lower the costs associated with treating multimorbidity and enhance the quality of life for patients suffering from chronic conditions.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00685-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: With the evolving disease spectrum, chronic diseases have emerged as a primary burden and a leading cause of mortality. Due to the aging population and the nature of chronic illnesses, patients often suffer from multimorbidity. Predicting the likelihood of these patients developing specific diseases in the future based on their current health status and age factors is a crucial task in multimorbidity research.
Methods: We propose an algorithm, CE-GCN, which integrates age sequence and embeds Graph Convolutional Network (GCN) into Gated Recurrent Unit (GRU), utilizing the topological feature of network common neighbors to predict links in dynamic complex networks. First, we constructed a disease evolution network spanning from ages 45 to 90 years old using disease information from 3333 patients. Then, we introduced an innovative approach for link prediction aimed at uncovering relationships between various diseases. This method takes into account patients' age to construct the evolutionary structure of the disease network, thereby predicting the connections between chronic diseases.
Results: Results from experiments conducted on real networks indicate that our model surpasses others regarding both MRR and MAP. The proposed method accurately reveals associations between diseases and effectively captures future disease risks.
Conclusion: Our model can serve as an objective and convenient computer-aided tool to identify hidden relationships between diseases in order to assist healthcare professionals in taking early disease interventions, which can substantially lower the costs associated with treating multimorbidity and enhance the quality of life for patients suffering from chronic conditions.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.