Potential Role of NUR77 in the Aging Retinal Pigment Epithelium and Age-Related Macular Degeneration.

4区 医学 Q2 Biochemistry, Genetics and Molecular Biology
Tanu Parmar, Vipul Parmar, Goldis Malek
{"title":"Potential Role of NUR77 in the Aging Retinal Pigment Epithelium and Age-Related Macular Degeneration.","authors":"Tanu Parmar, Vipul Parmar, Goldis Malek","doi":"10.1007/978-3-031-76550-6_27","DOIUrl":null,"url":null,"abstract":"<p><p>The underlying mechanisms associated with age-related changes in the morphology and function of retinal pigmented epithelial (RPE) cells are poorly understood. The aging RPE progresses through several structural changes including loss of melanin granules, accumulation of lipofuscin, and cytoskeletal changes, among others. Extracellular to it, there is also thickening of Bruch's membrane and changes in the integrity of the choroid. Recent studies have revealed that aging also affects the metabolic ecosystem of the RPE. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species generation, and increased number of mitochondrial mutations relative to baseline. These changes are also found in age-related macular degeneration (AMD), a late-onset vision-impairing disease, in which the RPE is particularly vulnerable. The orphan nuclear receptor NR4A1/NUR77 is an early response gene and regulator of various cellular processes during development, aging, and disease. Previously we observed decreased levels of Nur77/NUR77 in both mouse and human RPE as a function of age. Current knowledge of the function of this receptor in the RPE is limited. Herein, we discuss the putative roles of NUR77 in the RPE during aging and disease.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1468 ","pages":"165-169"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/978-3-031-76550-6_27","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The underlying mechanisms associated with age-related changes in the morphology and function of retinal pigmented epithelial (RPE) cells are poorly understood. The aging RPE progresses through several structural changes including loss of melanin granules, accumulation of lipofuscin, and cytoskeletal changes, among others. Extracellular to it, there is also thickening of Bruch's membrane and changes in the integrity of the choroid. Recent studies have revealed that aging also affects the metabolic ecosystem of the RPE. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species generation, and increased number of mitochondrial mutations relative to baseline. These changes are also found in age-related macular degeneration (AMD), a late-onset vision-impairing disease, in which the RPE is particularly vulnerable. The orphan nuclear receptor NR4A1/NUR77 is an early response gene and regulator of various cellular processes during development, aging, and disease. Previously we observed decreased levels of Nur77/NUR77 in both mouse and human RPE as a function of age. Current knowledge of the function of this receptor in the RPE is limited. Herein, we discuss the putative roles of NUR77 in the RPE during aging and disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in experimental medicine and biology
Advances in experimental medicine and biology 医学-医学:研究与实验
CiteScore
5.90
自引率
0.00%
发文量
465
审稿时长
2-4 weeks
期刊介绍: Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信