{"title":"The Connection Between Cellular Metabolism and Retinal Disease.","authors":"Larissa P Govers, Christian Grimm","doi":"10.1007/978-3-031-76550-6_44","DOIUrl":null,"url":null,"abstract":"<p><p>The retina is one of the most metabolically active tissues in the human body and has its own complex metabolic environment as the different cell types in this tissue are interconnected to maintain a healthy retinal homeostasis. Any disturbances in the homeostatic balance may have a severe impact on retinal function affecting vision. About 341 genes are listed in the RetNet database as being causative for monogenic inherited retinal diseases. By intersecting this list with the Mammalian Metabolic Enzyme Database, we identified 28 metabolic genes that can result in diseases such as retinitis pigmentosa, Leber congenital amaurosis, or optic atrophy when mutated. Alongside inherited retinal diseases, metabolism also plays a prominent role in acquired retinal diseases. Metabolomics studies have been performed on patients with age-related macular degeneration, diabetic retinopathy, and glaucoma revealing dysregulated metabolic pathways, such as lipid, amino acid, and purine metabolism, in the onset of disease. Although there are distinct pathophysiological differences between inherited and acquired retinal disorders, diving deeper into the role of metabolism and how metabolic dysfunction may overlap with different pathologies, could give us indications on how to design approaches to normalize the homeostatic balance in the retina as treatment options to protect vision.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1468 ","pages":"267-271"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/978-3-031-76550-6_44","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The retina is one of the most metabolically active tissues in the human body and has its own complex metabolic environment as the different cell types in this tissue are interconnected to maintain a healthy retinal homeostasis. Any disturbances in the homeostatic balance may have a severe impact on retinal function affecting vision. About 341 genes are listed in the RetNet database as being causative for monogenic inherited retinal diseases. By intersecting this list with the Mammalian Metabolic Enzyme Database, we identified 28 metabolic genes that can result in diseases such as retinitis pigmentosa, Leber congenital amaurosis, or optic atrophy when mutated. Alongside inherited retinal diseases, metabolism also plays a prominent role in acquired retinal diseases. Metabolomics studies have been performed on patients with age-related macular degeneration, diabetic retinopathy, and glaucoma revealing dysregulated metabolic pathways, such as lipid, amino acid, and purine metabolism, in the onset of disease. Although there are distinct pathophysiological differences between inherited and acquired retinal disorders, diving deeper into the role of metabolism and how metabolic dysfunction may overlap with different pathologies, could give us indications on how to design approaches to normalize the homeostatic balance in the retina as treatment options to protect vision.
期刊介绍:
Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.