{"title":"Extracellular Matrix Gene Expression Patterns in Retinal Wound Healing: A Comparative Study Between Mouse and Zebrafish Laser Injury Models.","authors":"Laura Jahnke, Volker Enzmann","doi":"10.1007/978-3-031-76550-6_35","DOIUrl":null,"url":null,"abstract":"<p><p>Fibrosis is an outcome of irregular wound healing, manifesting as heightened scar formation marked by substantial extracellular matrix (ECM) accumulation, persistent inflammation, and gradual tissue or organ restructuring. This condition disrupts the normal tissue architecture, impairing organ function. Herein, the pivotal role of fibrosis in retinal repair mechanisms is compared in mice and zebrafish in responses to laser-induced injury. Our focus spans the intricate interplay between the gene regulation of ECM-involved protagonists and the dynamic development of fibrotic scars. We observed differential gene expression shifts and evaluated the effects of the fibrosis inhibitor pirfenidone (PFD) in the mouse model. These insights into retinal repair mechanisms contribute to a comprehensive understanding, guiding future therapeutic strategies for vision preservation.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1468 ","pages":"213-217"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/978-3-031-76550-6_35","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Fibrosis is an outcome of irregular wound healing, manifesting as heightened scar formation marked by substantial extracellular matrix (ECM) accumulation, persistent inflammation, and gradual tissue or organ restructuring. This condition disrupts the normal tissue architecture, impairing organ function. Herein, the pivotal role of fibrosis in retinal repair mechanisms is compared in mice and zebrafish in responses to laser-induced injury. Our focus spans the intricate interplay between the gene regulation of ECM-involved protagonists and the dynamic development of fibrotic scars. We observed differential gene expression shifts and evaluated the effects of the fibrosis inhibitor pirfenidone (PFD) in the mouse model. These insights into retinal repair mechanisms contribute to a comprehensive understanding, guiding future therapeutic strategies for vision preservation.
期刊介绍:
Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.