Daniel Canavello, C. Reichhardt, C. J. O. Reichhardt and Clécio C. de Souza Silva
{"title":"Polarization and dynamic phases of aligning active matter in periodic obstacle arrays†","authors":"Daniel Canavello, C. Reichhardt, C. J. O. Reichhardt and Clécio C. de Souza Silva","doi":"10.1039/D4SM01404A","DOIUrl":null,"url":null,"abstract":"<p >We numerically examine a system of monodisperse self-propelled particles interacting with each other <em>via</em> simple steric forces and aligning torques moving through a periodic array of obstacles. Without obstacles, this system shows a transition to a polarized or aligned state for critical alignment parameters. In the presence of obstacles, there is still a polarization transition, but for dense enough arrays, the polarization is locked to the symmetry directions of the substrate. When the obstacle array is made anisotropic, at low densities the particles can form a quasi-isotropic state where the system can be polarized in any of the dominant symmetry directions. For intermediate anisotropy, the particles self-organize into a coherent lane state with one-dimensional polarization. In this phase, a small number of highly packed lanes are adjacent to less dense lanes that have the same polarization, but lanes further away can have the opposite polarization, so that global polarization is lost. For the highest anisotropy, hopping between lanes is suppressed, and the system forms uniformly dense uncoupled but polarized lanes.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 9","pages":" 1760-1767"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d4sm01404a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We numerically examine a system of monodisperse self-propelled particles interacting with each other via simple steric forces and aligning torques moving through a periodic array of obstacles. Without obstacles, this system shows a transition to a polarized or aligned state for critical alignment parameters. In the presence of obstacles, there is still a polarization transition, but for dense enough arrays, the polarization is locked to the symmetry directions of the substrate. When the obstacle array is made anisotropic, at low densities the particles can form a quasi-isotropic state where the system can be polarized in any of the dominant symmetry directions. For intermediate anisotropy, the particles self-organize into a coherent lane state with one-dimensional polarization. In this phase, a small number of highly packed lanes are adjacent to less dense lanes that have the same polarization, but lanes further away can have the opposite polarization, so that global polarization is lost. For the highest anisotropy, hopping between lanes is suppressed, and the system forms uniformly dense uncoupled but polarized lanes.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.