Undifferentiated Human Amniotic Fluid Progenitor Cells Promote Bone Regeneration in Vivo

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Queralt Vallmajo-Martin, Anna-Sofia Kiveliö, Stéphanie Metzger, Vincent Milleret, Philipp S. Lienemann, Bianca M. Carrara, Christopher Millan, Chafik Ghayor, Nicole Ochsenbein-Koelble, Martin Ehrbar
{"title":"Undifferentiated Human Amniotic Fluid Progenitor Cells Promote Bone Regeneration in Vivo","authors":"Queralt Vallmajo-Martin,&nbsp;Anna-Sofia Kiveliö,&nbsp;Stéphanie Metzger,&nbsp;Vincent Milleret,&nbsp;Philipp S. Lienemann,&nbsp;Bianca M. Carrara,&nbsp;Christopher Millan,&nbsp;Chafik Ghayor,&nbsp;Nicole Ochsenbein-Koelble,&nbsp;Martin Ehrbar","doi":"10.1002/adhm.202300843","DOIUrl":null,"url":null,"abstract":"<p>The treatment of large bone defects requires bone tissue substitutes. However, the lack of accessible autologous bone, especially in newborns with spina bifida or cleft palate conditions, severely limits therapeutic options involving bone grafts. Here, an engineering approach to reconstruct bone is presented by combining human amniocentesis-derived amniotic fluid progenitor cells (hAFCs) and a biomimetic, injectable, and fully synthetic poly(ethylene glycol) hydrogel that is crosslinked enzymatically by transglutaminase FXIII (TG-PEG). hAFCs are isolated by their colony-forming capacity, expanded in vitro, and undergo osteogenic, chondrogenic, or adipogenic differentiation under appropriate stimulation. When encapsulated in TG-PEG hydrogels, hAFCs rapidly deposit endogenous extracellular matrix (ECM) in vitro. hAFC-laden TG-PEG hydrogels containing low concentrations of bone morphogenetic protein (BMP-2) promote formation of ectopic bone organoids in vivo in a murine model without requiring prior in vitro differentiation. Strikingly, hAFC-induced constructs form as much bone in this model as adult bone marrow-derived stromal cells (hBMSCs), and significantly more than adipose-derived stromal cells (hASCs). Utilization of autologous hAFCs embedded in TG-PEG hydrogels presents a promising therapeutic strategy for bone replacement, particularly in fetuses and newborns where limited stem cell availability can be overcome through minimally invasive harvest of amniotic fluid.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"14 10","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202300843","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The treatment of large bone defects requires bone tissue substitutes. However, the lack of accessible autologous bone, especially in newborns with spina bifida or cleft palate conditions, severely limits therapeutic options involving bone grafts. Here, an engineering approach to reconstruct bone is presented by combining human amniocentesis-derived amniotic fluid progenitor cells (hAFCs) and a biomimetic, injectable, and fully synthetic poly(ethylene glycol) hydrogel that is crosslinked enzymatically by transglutaminase FXIII (TG-PEG). hAFCs are isolated by their colony-forming capacity, expanded in vitro, and undergo osteogenic, chondrogenic, or adipogenic differentiation under appropriate stimulation. When encapsulated in TG-PEG hydrogels, hAFCs rapidly deposit endogenous extracellular matrix (ECM) in vitro. hAFC-laden TG-PEG hydrogels containing low concentrations of bone morphogenetic protein (BMP-2) promote formation of ectopic bone organoids in vivo in a murine model without requiring prior in vitro differentiation. Strikingly, hAFC-induced constructs form as much bone in this model as adult bone marrow-derived stromal cells (hBMSCs), and significantly more than adipose-derived stromal cells (hASCs). Utilization of autologous hAFCs embedded in TG-PEG hydrogels presents a promising therapeutic strategy for bone replacement, particularly in fetuses and newborns where limited stem cell availability can be overcome through minimally invasive harvest of amniotic fluid.

Abstract Image

Abstract Image

Abstract Image

未分化的人羊水祖细胞促进体内骨再生。
大骨缺损的治疗需要骨组织替代物。然而,缺乏可获得的自体骨,特别是在患有脊柱裂或腭裂的新生儿中,严重限制了骨移植的治疗选择。本文提出了一种重建骨的工程方法,将人羊膜穿针术衍生的羊水祖细胞(hafc)与一种可注射的仿生、完全合成的聚乙二醇水凝胶结合起来,这种水凝胶通过谷氨酰胺转酶FXIII (TG-PEG)进行交联。通过其集落形成能力分离hafc,在体外扩增,并在适当刺激下进行成骨、软骨或脂肪分化。当被TG-PEG水凝胶包裹时,hafc在体外迅速沉积内源性细胞外基质(ECM)。含hafc的TG-PEG水凝胶含有低浓度的骨形态发生蛋白(BMP-2),在小鼠模型中促进异位骨类器官的形成,而无需事先进行体外分化。引人注目的是,在这个模型中,hafc诱导的构建物形成的骨与成人骨髓来源的基质细胞(hBMSCs)一样多,并且明显多于脂肪来源的基质细胞(hASCs)。利用嵌入TG-PEG水凝胶的自体hafc为骨替代提供了一种很有前景的治疗策略,特别是在胎儿和新生儿中,通过微创羊水采集可以克服有限的干细胞可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信