Magnetic Molecules as Building Blocks for Quantum Technologies

IF 4.4 Q1 OPTICS
Eufemio Moreno-Pineda, Wolfgang Wernsdorfer
{"title":"Magnetic Molecules as Building Blocks for Quantum Technologies","authors":"Eufemio Moreno-Pineda,&nbsp;Wolfgang Wernsdorfer","doi":"10.1002/qute.202300367","DOIUrl":null,"url":null,"abstract":"<p>Since the initial observation of quantum effects, scientists have worked diligently to understand and harness their potential. Thanks to many pioneers, a level where quantum effects can be exploited is reached. Numerous cutting-edge technologies, such as quantum sensing and quantum computing, are proposed. A common trait in all technologies is the need to manipulate and read out their states; therefore, the quantum characteristics of the building blocks must adhere to strict guidelines. Magnetic Molecules (MMs) are promising candidates. They can be obtained indistinguishably, and the control over their structural and electronic properties, makes them appealing to act as quantum bits or “qubits”. MMs can be connected to other units while preserving their coherence properties, enabling the implementation of quantum gates. Furthermore, the low-lying energy levels can be exploited as qudits, which can exist in more than 2 states simultaneously (d &gt; 2), allowing them to hold more information efficiently. The larger electronic/nuclear space in qudits can decrease the number of physical units and enhance computational efficiency, reducing error and making them promise for complex problem-solving. In this perspective article, the physical characteristics of MMs and key achievements that position them as promising candidates for quantum technologies, are described.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202300367","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202300367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Since the initial observation of quantum effects, scientists have worked diligently to understand and harness their potential. Thanks to many pioneers, a level where quantum effects can be exploited is reached. Numerous cutting-edge technologies, such as quantum sensing and quantum computing, are proposed. A common trait in all technologies is the need to manipulate and read out their states; therefore, the quantum characteristics of the building blocks must adhere to strict guidelines. Magnetic Molecules (MMs) are promising candidates. They can be obtained indistinguishably, and the control over their structural and electronic properties, makes them appealing to act as quantum bits or “qubits”. MMs can be connected to other units while preserving their coherence properties, enabling the implementation of quantum gates. Furthermore, the low-lying energy levels can be exploited as qudits, which can exist in more than 2 states simultaneously (d > 2), allowing them to hold more information efficiently. The larger electronic/nuclear space in qudits can decrease the number of physical units and enhance computational efficiency, reducing error and making them promise for complex problem-solving. In this perspective article, the physical characteristics of MMs and key achievements that position them as promising candidates for quantum technologies, are described.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信