Prediction of Equatorial Plasma Bubble Formation Using Ionosonde Observations From India

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2025-02-12 DOI:10.1029/2024AV001323
A. K. Patra, S. K. Das
{"title":"Prediction of Equatorial Plasma Bubble Formation Using Ionosonde Observations From India","authors":"A. K. Patra,&nbsp;S. K. Das","doi":"10.1029/2024AV001323","DOIUrl":null,"url":null,"abstract":"<p>Prediction of equatorial plasma bubbles (EPBs) is a need of the hour for many modern navigation/communication applications. In this paper, we demonstrate an ionosonde based technique for the prediction of EPB formation overhead and its robustness using a large ionosonde data set, covering diverse solar flux and geomagnetic conditions, from three low-latitude Indian stations, namely, Trivandrum, Sriharikota and Gadanki. The technique relies on localized upwelling at the bottomside <i>F</i> layer, characterized by the second time derivative of the base height of the <i>F</i> layer observed by ionosonde, as the prime criterion deciding whether EPB will be formed overhead or not. Results show that prediction for the formation of EPB over an ionosonde station can be made with an accuracy of 99.86%. The accuracy of prediction of EPB formation over a station using data from a nearby station separated by 3.2° in longitude, however, is found to be only 83.87%, underlining the crucial role of longitudinally localized background ionospheric conditions at the bottom of the <i>F</i> region. We discuss the prospective of the present technique and propose a cost effective approach for developing an effective EPB prediction strategy.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001323","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024AV001323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Prediction of equatorial plasma bubbles (EPBs) is a need of the hour for many modern navigation/communication applications. In this paper, we demonstrate an ionosonde based technique for the prediction of EPB formation overhead and its robustness using a large ionosonde data set, covering diverse solar flux and geomagnetic conditions, from three low-latitude Indian stations, namely, Trivandrum, Sriharikota and Gadanki. The technique relies on localized upwelling at the bottomside F layer, characterized by the second time derivative of the base height of the F layer observed by ionosonde, as the prime criterion deciding whether EPB will be formed overhead or not. Results show that prediction for the formation of EPB over an ionosonde station can be made with an accuracy of 99.86%. The accuracy of prediction of EPB formation over a station using data from a nearby station separated by 3.2° in longitude, however, is found to be only 83.87%, underlining the crucial role of longitudinally localized background ionospheric conditions at the bottom of the F region. We discuss the prospective of the present technique and propose a cost effective approach for developing an effective EPB prediction strategy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信