{"title":"Acute Myeloid Leukemia-Osteoblast Interaction Mediated Autophagy Induction Protects Against Cytarabine Induced Apoptosis","authors":"Kamini Shivhare, Neeraj Kumar Satija","doi":"10.1002/cbf.70055","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>High rate of relapse, following chemotherapy, in acute myeloid leukemia (AML) is a major concern. The chemoprotection conferred by the bone marrow microenvironment has lately been recognized, in addition to autophagy-mediated chemoresistance. Thus, the present study explored the effect of osteoblast on autophagy in AML and its impact on sensitivity to cytarabine (Ara-C) in the context of endosteal niche. Co-culture of KG1-a, HL60, or THP-1 AML cells with osteoblastic Saos-2 cell line induced autophagy in AML cell lines under direct contact. HL60 cells when co-culture with Saos-2 demonstrated more resistance to Ara-C induced apoptosis, which was reversed upon chloroquine treatment. Similarly, inhibition of autophagy in AML cell by knocking down Beclin-1 enhanced HL60 sensitivity to Ara-C. An interesting observation was upregulation of autophagy even in Saos-2 cells upon co-culture with AML cell, and increase in HL60 apoptosis in response to Ara-C on Beclin-1 knockdown in osteoblast cell. This highlights that autophagy plays a chemoprotective role in the endosteal niche in AML against Ara-C.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70055","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High rate of relapse, following chemotherapy, in acute myeloid leukemia (AML) is a major concern. The chemoprotection conferred by the bone marrow microenvironment has lately been recognized, in addition to autophagy-mediated chemoresistance. Thus, the present study explored the effect of osteoblast on autophagy in AML and its impact on sensitivity to cytarabine (Ara-C) in the context of endosteal niche. Co-culture of KG1-a, HL60, or THP-1 AML cells with osteoblastic Saos-2 cell line induced autophagy in AML cell lines under direct contact. HL60 cells when co-culture with Saos-2 demonstrated more resistance to Ara-C induced apoptosis, which was reversed upon chloroquine treatment. Similarly, inhibition of autophagy in AML cell by knocking down Beclin-1 enhanced HL60 sensitivity to Ara-C. An interesting observation was upregulation of autophagy even in Saos-2 cells upon co-culture with AML cell, and increase in HL60 apoptosis in response to Ara-C on Beclin-1 knockdown in osteoblast cell. This highlights that autophagy plays a chemoprotective role in the endosteal niche in AML against Ara-C.
期刊介绍:
Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease.
The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.