{"title":"YGL9 mediates LHC assembly by regulating LHCPs transport and chlorophyll synthesis in rice","authors":"Tianquan Zhang, Wenwen Xiao, Zhongwei Wang, Jichao Zhang, Wenqiang Shen, Ranran Tu, Ruhui Wu, Kai Zhou, Xianchun Sang, Yinghua Ling, Guanghua He, Ting Zhang","doi":"10.1111/tpj.17256","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>LHC assembly is a fundamental process in forming a peripheral antenna system, which has a significant impact on photosynthesis. However, the molecular mechanism of the LHC assembly still needs to be further investigated in monocotyledonous plants. Here, we identified a bifunctional protein YGL9 in rice, a homolog of cpSRP43 in <i>Arabidopsis</i>, mediates LHC assembly by simultaneously regulating LHCPs transport and chlorophyll synthesis. Mutation of <i>YGL9</i> exhibits a yellow-green leaf phenotype, with reduced LHCPs contents, impaired photosystem activity and reduced chlorophyll content. YGL9 interacts with cpSRP54 forming the cpSRP complex that transport LHCPs, and YGL9 also interacts with and stabilizes OsGUN4, which is an activator of MgCh and participates in the regulation of chlorophyll synthesis, to synergistically participate in chlorophyll synthesis. Further, genetic evidence demonstrates that YGL9 functions in the same pathway as cpSRP54 and OsGUN4 to regulate LHCPs transport and chlorophyll synthesis. Thus, our study reveals a cross-relationship between LHCPs transport and chlorophyll synthesis, and provides new insights into the LHC assembly process in monocotyledonous plants.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17256","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
LHC assembly is a fundamental process in forming a peripheral antenna system, which has a significant impact on photosynthesis. However, the molecular mechanism of the LHC assembly still needs to be further investigated in monocotyledonous plants. Here, we identified a bifunctional protein YGL9 in rice, a homolog of cpSRP43 in Arabidopsis, mediates LHC assembly by simultaneously regulating LHCPs transport and chlorophyll synthesis. Mutation of YGL9 exhibits a yellow-green leaf phenotype, with reduced LHCPs contents, impaired photosystem activity and reduced chlorophyll content. YGL9 interacts with cpSRP54 forming the cpSRP complex that transport LHCPs, and YGL9 also interacts with and stabilizes OsGUN4, which is an activator of MgCh and participates in the regulation of chlorophyll synthesis, to synergistically participate in chlorophyll synthesis. Further, genetic evidence demonstrates that YGL9 functions in the same pathway as cpSRP54 and OsGUN4 to regulate LHCPs transport and chlorophyll synthesis. Thus, our study reveals a cross-relationship between LHCPs transport and chlorophyll synthesis, and provides new insights into the LHC assembly process in monocotyledonous plants.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.