Systematic Investigation of Metabolism and Potential Pharmacological Mechanism of Tanreqing Injection to Human Lower Respiratory Tract Infection Based on UPLC–Q–TOF–MSE and Network Pharmacology

IF 1.8 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Huanlu Wang, Xi Mai, Yan Jing, Shuhao Liu
{"title":"Systematic Investigation of Metabolism and Potential Pharmacological Mechanism of Tanreqing Injection to Human Lower Respiratory Tract Infection Based on UPLC–Q–TOF–MSE and Network Pharmacology","authors":"Huanlu Wang,&nbsp;Xi Mai,&nbsp;Yan Jing,&nbsp;Shuhao Liu","doi":"10.1002/bmc.70024","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Tanreqing injection (TRQI), a well-known traditional Chinese medicine, has a marked curative effect on lower respiratory tract infections. A strategy using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC–Q–TOF–MS<sup>E</sup>) for rapid identification of metabolites from TRQI was proposed by UNIFI informatics platform combined with multiple data processing techniques. Target prediction was then performed based on the original compounds in vivo, and a network between the active compounds and common targets was established using Cytoscape v3.9.0. As a result, 64 original compounds were characterized in TRQI, and 54 original compounds and 76 metabolites of TRQI were detected in human plasma and urine, two of which (M28 and M45) were novel metabolites. A novel metabolic pathway for lonicerin was identified. The compound-target-pathway network identified 22 target genes and 20 signaling pathways that were linked to these mechanisms. The key mechanism is related to the JAK-STAT signaling pathway and PI3K-Akt signaling pathway. The bioactive ingredients and mechanisms of action of TQRI against lower respiratory tract infections based on original compounds in vivo were explored through network pharmacology and molecular docking. This is the first study in which the mechanism of action of TRQI in humans has been clarified.</p>\n </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.70024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Tanreqing injection (TRQI), a well-known traditional Chinese medicine, has a marked curative effect on lower respiratory tract infections. A strategy using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC–Q–TOF–MSE) for rapid identification of metabolites from TRQI was proposed by UNIFI informatics platform combined with multiple data processing techniques. Target prediction was then performed based on the original compounds in vivo, and a network between the active compounds and common targets was established using Cytoscape v3.9.0. As a result, 64 original compounds were characterized in TRQI, and 54 original compounds and 76 metabolites of TRQI were detected in human plasma and urine, two of which (M28 and M45) were novel metabolites. A novel metabolic pathway for lonicerin was identified. The compound-target-pathway network identified 22 target genes and 20 signaling pathways that were linked to these mechanisms. The key mechanism is related to the JAK-STAT signaling pathway and PI3K-Akt signaling pathway. The bioactive ingredients and mechanisms of action of TQRI against lower respiratory tract infections based on original compounds in vivo were explored through network pharmacology and molecular docking. This is the first study in which the mechanism of action of TRQI in humans has been clarified.

基于UPLC-Q-TOF-MSE和网络药理学的痰热清注射液对人下呼吸道感染代谢及潜在药理机制的系统研究
痰热清注射液(TRQI)是一种著名的中药,对下呼吸道感染有显著的疗效。采用超高效液相色谱-四极杆飞行时间串联质谱(UPLC-Q-TOF-MSE)联用UNIFI信息学平台,结合多种数据处理技术,提出了一种快速鉴定TRQI代谢产物的策略。然后根据体内原始化合物进行靶点预测,并利用Cytoscape v3.9.0建立活性化合物与共同靶点之间的网络。结果,在TRQI中鉴定了64种原始化合物,在人血浆和尿液中检测到54种原始化合物和76种TRQI代谢物,其中2种(M28和M45)为新代谢物。发现了一种新的忍冬素代谢途径。化合物-靶-通路网络确定了22个靶基因和20个与这些机制相关的信号通路。其关键机制与JAK-STAT信号通路和PI3K-Akt信号通路有关。通过网络药理学和分子对接,探索TQRI在体内原始化合物基础上抗下呼吸道感染的生物活性成分及其作用机制。这是首次阐明TRQI在人体中的作用机制的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Chromatography
Biomedical Chromatography 生物-分析化学
CiteScore
3.60
自引率
5.60%
发文量
268
审稿时长
2.3 months
期刊介绍: Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信