Systematic Investigation of Metabolism and Potential Pharmacological Mechanism of Tanreqing Injection to Human Lower Respiratory Tract Infection Based on UPLC–Q–TOF–MSE and Network Pharmacology

IF 1.8 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Huanlu Wang, Xi Mai, Yan Jing, Shuhao Liu
{"title":"Systematic Investigation of Metabolism and Potential Pharmacological Mechanism of Tanreqing Injection to Human Lower Respiratory Tract Infection Based on UPLC–Q–TOF–MSE and Network Pharmacology","authors":"Huanlu Wang,&nbsp;Xi Mai,&nbsp;Yan Jing,&nbsp;Shuhao Liu","doi":"10.1002/bmc.70024","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Tanreqing injection (TRQI), a well-known traditional Chinese medicine, has a marked curative effect on lower respiratory tract infections. A strategy using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC–Q–TOF–MS<sup>E</sup>) for rapid identification of metabolites from TRQI was proposed by UNIFI informatics platform combined with multiple data processing techniques. Target prediction was then performed based on the original compounds in vivo, and a network between the active compounds and common targets was established using Cytoscape v3.9.0. As a result, 64 original compounds were characterized in TRQI, and 54 original compounds and 76 metabolites of TRQI were detected in human plasma and urine, two of which (M28 and M45) were novel metabolites. A novel metabolic pathway for lonicerin was identified. The compound-target-pathway network identified 22 target genes and 20 signaling pathways that were linked to these mechanisms. The key mechanism is related to the JAK-STAT signaling pathway and PI3K-Akt signaling pathway. The bioactive ingredients and mechanisms of action of TQRI against lower respiratory tract infections based on original compounds in vivo were explored through network pharmacology and molecular docking. This is the first study in which the mechanism of action of TRQI in humans has been clarified.</p>\n </div>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.70024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Tanreqing injection (TRQI), a well-known traditional Chinese medicine, has a marked curative effect on lower respiratory tract infections. A strategy using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC–Q–TOF–MSE) for rapid identification of metabolites from TRQI was proposed by UNIFI informatics platform combined with multiple data processing techniques. Target prediction was then performed based on the original compounds in vivo, and a network between the active compounds and common targets was established using Cytoscape v3.9.0. As a result, 64 original compounds were characterized in TRQI, and 54 original compounds and 76 metabolites of TRQI were detected in human plasma and urine, two of which (M28 and M45) were novel metabolites. A novel metabolic pathway for lonicerin was identified. The compound-target-pathway network identified 22 target genes and 20 signaling pathways that were linked to these mechanisms. The key mechanism is related to the JAK-STAT signaling pathway and PI3K-Akt signaling pathway. The bioactive ingredients and mechanisms of action of TQRI against lower respiratory tract infections based on original compounds in vivo were explored through network pharmacology and molecular docking. This is the first study in which the mechanism of action of TRQI in humans has been clarified.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Chromatography
Biomedical Chromatography 生物-分析化学
CiteScore
3.60
自引率
5.60%
发文量
268
审稿时长
2.3 months
期刊介绍: Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信