Interactive effects of leaf pathogens and plant mycorrhizal type on plant diversity–productivity relationships

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY
Ecology Pub Date : 2025-02-11 DOI:10.1002/ecy.70029
Nianxun Xi, Yansong Zhao, Marina Semchenko
{"title":"Interactive effects of leaf pathogens and plant mycorrhizal type on plant diversity–productivity relationships","authors":"Nianxun Xi,&nbsp;Yansong Zhao,&nbsp;Marina Semchenko","doi":"10.1002/ecy.70029","DOIUrl":null,"url":null,"abstract":"<p>Diversity–productivity relationships can differ between forests dominated by different mycorrhizal types and be modulated by specialist and generalist pathogens. However, little is known about how these factors interact to modulate biodiversity effects. We addressed this knowledge gap with a 2-year experiment combining the manipulation of plant richness (one, two, four, eight species) and mycorrhizal tree type (arbuscular mycorrhizal [AM] tree-dominated; ecto-mycorrhizal [ECM] tree-dominated) with fungicide application for leaf pathogens (added or control). Biodiversity effects were quantified for community productivity and its two components (shoots and roots). We observed nonlinear diversity–productivity relationships, with the productivity of ECM tree-dominated communities increasing at low to intermediate diversity and declining at the highest species richness. Foliar fungicide application reduced positive complementarity effects and increased productivity in both ECM tree monocultures as well as eight-species mixtures. This finding suggests that the dilution effects of specialized pathogens may dominate at low diversity, while the spillover effects of generalist pathogens may become dominant at high diversity, resulting in unimodal diversity–productivity relationships. In AM tree-dominated communities, aboveground productivity strongly increased in response to leaf pathogen suppression in eight-species mixtures, and the release from leaf pathogens benefited most of the species that were most productive in fungicide-treated monocultures. This agrees with the prediction that spillover effects of generalist pathogens in diverse plant communities could differentially suppress highly productive species due to the trade-off between growth and defense. In addition, positive biodiversity effects on root production were significantly stronger in AM tree- than ECM tree-dominated communities. Our results demonstrate that relationships between plant diversity and productivity can be nonlinear due to the combined effects of specialized and generalized plant–fungal interactions, depend on plant mycorrhizal type, and differ between aboveground and belowground compartments.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70029","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diversity–productivity relationships can differ between forests dominated by different mycorrhizal types and be modulated by specialist and generalist pathogens. However, little is known about how these factors interact to modulate biodiversity effects. We addressed this knowledge gap with a 2-year experiment combining the manipulation of plant richness (one, two, four, eight species) and mycorrhizal tree type (arbuscular mycorrhizal [AM] tree-dominated; ecto-mycorrhizal [ECM] tree-dominated) with fungicide application for leaf pathogens (added or control). Biodiversity effects were quantified for community productivity and its two components (shoots and roots). We observed nonlinear diversity–productivity relationships, with the productivity of ECM tree-dominated communities increasing at low to intermediate diversity and declining at the highest species richness. Foliar fungicide application reduced positive complementarity effects and increased productivity in both ECM tree monocultures as well as eight-species mixtures. This finding suggests that the dilution effects of specialized pathogens may dominate at low diversity, while the spillover effects of generalist pathogens may become dominant at high diversity, resulting in unimodal diversity–productivity relationships. In AM tree-dominated communities, aboveground productivity strongly increased in response to leaf pathogen suppression in eight-species mixtures, and the release from leaf pathogens benefited most of the species that were most productive in fungicide-treated monocultures. This agrees with the prediction that spillover effects of generalist pathogens in diverse plant communities could differentially suppress highly productive species due to the trade-off between growth and defense. In addition, positive biodiversity effects on root production were significantly stronger in AM tree- than ECM tree-dominated communities. Our results demonstrate that relationships between plant diversity and productivity can be nonlinear due to the combined effects of specialized and generalized plant–fungal interactions, depend on plant mycorrhizal type, and differ between aboveground and belowground compartments.

Abstract Image

叶片病原体和植物菌根类型对植物多样性-生产力关系的交互影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信