Highly Threatened Status for the Relict Populations of Ectoparasitic Copepod Salmincola californiensis in Japan

IF 2.5 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Ryota Hasegawa, Yohsuke Uemura, Yasunori Yamashita, Makoto Inoshita, Itsuro Koizumi
{"title":"Highly Threatened Status for the Relict Populations of Ectoparasitic Copepod Salmincola californiensis in Japan","authors":"Ryota Hasegawa,&nbsp;Yohsuke Uemura,&nbsp;Yasunori Yamashita,&nbsp;Makoto Inoshita,&nbsp;Itsuro Koizumi","doi":"10.1002/aqc.70073","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Many species have been threatened over the past century because of anthropogenic disturbances. Parasites are among the most vulnerable groups because they rely on host organisms, many of which are now endangered. While many studies have argued and evaluated the risk of parasite extinction, empirical evidence is still lacking, especially from aquatic ecosystems. Here, we show the highly threatened status of relict populations of the ectoparasitic copepod <i>Salmincola californiensis</i> in Japan. <i>S. californiensis</i> attaches to the branchial cavities of freshwater salmonids of the genus <i>Oncorhynchus</i> spp., and only four local populations have been reported from disparate regions of Japan, isolated probably due to range contractions after glacial periods. Through citizen-led field surveys, we found no copepod infections in half of the <i>S. californiensis</i> populations previously reported, suggesting that local extinction has occurred within the last 50–60 years. The upstream reaches of the Kiso River and the Naka River harboured the only sustained populations, though the Kiso population may also have experienced population decline. Our results indicate that parasites can quickly decline over a large geographic scale, especially at range margins. When focal parasites are visible, citizen science is an effective approach for identifying the distributional range of rare parasites and aiding their conservation.</p>\n </div>","PeriodicalId":55493,"journal":{"name":"Aquatic Conservation-Marine and Freshwater Ecosystems","volume":"35 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Conservation-Marine and Freshwater Ecosystems","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aqc.70073","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Many species have been threatened over the past century because of anthropogenic disturbances. Parasites are among the most vulnerable groups because they rely on host organisms, many of which are now endangered. While many studies have argued and evaluated the risk of parasite extinction, empirical evidence is still lacking, especially from aquatic ecosystems. Here, we show the highly threatened status of relict populations of the ectoparasitic copepod Salmincola californiensis in Japan. S. californiensis attaches to the branchial cavities of freshwater salmonids of the genus Oncorhynchus spp., and only four local populations have been reported from disparate regions of Japan, isolated probably due to range contractions after glacial periods. Through citizen-led field surveys, we found no copepod infections in half of the S. californiensis populations previously reported, suggesting that local extinction has occurred within the last 50–60 years. The upstream reaches of the Kiso River and the Naka River harboured the only sustained populations, though the Kiso population may also have experienced population decline. Our results indicate that parasites can quickly decline over a large geographic scale, especially at range margins. When focal parasites are visible, citizen science is an effective approach for identifying the distributional range of rare parasites and aiding their conservation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquatic Conservation-Marine and Freshwater Ecosystems
Aquatic Conservation-Marine and Freshwater Ecosystems 环境科学-海洋与淡水生物学
CiteScore
5.50
自引率
4.20%
发文量
143
审稿时长
18-36 weeks
期刊介绍: Aquatic Conservation: Marine and Freshwater Ecosystems is an international journal dedicated to publishing original papers that relate specifically to freshwater, brackish or marine habitats and encouraging work that spans these ecosystems. This journal provides a forum in which all aspects of the conservation of aquatic biological resources can be presented and discussed, enabling greater cooperation and efficiency in solving problems in aquatic resource conservation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信