Metabolome and comparative genome provide insights into secondary metabolites generation of a rare karst-growing Rhododendron in vitro culture

IF 6.2 1区 生物学 Q1 PLANT SCIENCES
Sulin Wen, Xiaowei Cai, Kui Zhou, Yi Min, Chunqiong Shang, Luonan Shen, Lin Deng, Di Liu, Guang Qiao, Xiaohui Shen
{"title":"Metabolome and comparative genome provide insights into secondary metabolites generation of a rare karst-growing Rhododendron in vitro culture","authors":"Sulin Wen,&nbsp;Xiaowei Cai,&nbsp;Kui Zhou,&nbsp;Yi Min,&nbsp;Chunqiong Shang,&nbsp;Luonan Shen,&nbsp;Lin Deng,&nbsp;Di Liu,&nbsp;Guang Qiao,&nbsp;Xiaohui Shen","doi":"10.1111/tpj.17235","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><i>Rhododendron</i> species have the potential to be rich in secondary metabolites with pharmaceutical or industrial value. However, there is a lack of comprehensive metabolome studies at the genome level, particularly for unique and rare species like <i>Rhododendron bailiense</i>, which exclusively grows in karst environments in Guizhou, southwest China. Recently, genome assembly data for this species was available. In this study, nontargeted metabolomics was employed to investigate the secondary metabolites profile of <i>R. bailiense</i> callus. The callus of <i>R. bailiense</i> was induced using 0.2 mg L<sup>−1</sup> TDZ (Thidiazuron) + 0.1 mg L<sup>−1</sup> IBA (3-Indole butyric acid). A comparison between light-treated calli and dark-cultured calli revealed differential accumulation of metabolites, particularly in flavonoids, terpenoids, coumarins, and hydroxycinnamic acids, known for their beneficial effects such as antioxidant, anticancer, and anti-inflammatory properties. Proanthocyanidins, with various health-promoting effects, were found to accumulate significantly in dark-cultured calli. Light conditions promoted diterpene and triterpene products, whereas darkness favored sesquiterpene products. Additionally, the study demonstrated the potential of utilizing <i>Agrobacterium</i> transformation technology on callus suspension cells to enhance secondary metabolite production. Comparison with the genome of <i>Rhododendron molle</i> revealed that the <i>R. bailiense</i> genome exhibited active ‘glycosyltransferase activity,’ possessed a higher number of copies of monoterpene and sesquiterpene terpene synthases, and contained high copies of specific cytochrome P450 members (CYP71, CYP76, CYP79, CYP82, CYP736). This study offers valuable insights and potential strategies for the biosynthesis and production of <i>Rhododendron</i> secondary metabolites with pharmaceutical or industrial significance.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17235","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rhododendron species have the potential to be rich in secondary metabolites with pharmaceutical or industrial value. However, there is a lack of comprehensive metabolome studies at the genome level, particularly for unique and rare species like Rhododendron bailiense, which exclusively grows in karst environments in Guizhou, southwest China. Recently, genome assembly data for this species was available. In this study, nontargeted metabolomics was employed to investigate the secondary metabolites profile of R. bailiense callus. The callus of R. bailiense was induced using 0.2 mg L−1 TDZ (Thidiazuron) + 0.1 mg L−1 IBA (3-Indole butyric acid). A comparison between light-treated calli and dark-cultured calli revealed differential accumulation of metabolites, particularly in flavonoids, terpenoids, coumarins, and hydroxycinnamic acids, known for their beneficial effects such as antioxidant, anticancer, and anti-inflammatory properties. Proanthocyanidins, with various health-promoting effects, were found to accumulate significantly in dark-cultured calli. Light conditions promoted diterpene and triterpene products, whereas darkness favored sesquiterpene products. Additionally, the study demonstrated the potential of utilizing Agrobacterium transformation technology on callus suspension cells to enhance secondary metabolite production. Comparison with the genome of Rhododendron molle revealed that the R. bailiense genome exhibited active ‘glycosyltransferase activity,’ possessed a higher number of copies of monoterpene and sesquiterpene terpene synthases, and contained high copies of specific cytochrome P450 members (CYP71, CYP76, CYP79, CYP82, CYP736). This study offers valuable insights and potential strategies for the biosynthesis and production of Rhododendron secondary metabolites with pharmaceutical or industrial significance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信