Predicting the Evolution of Shallow Cumulus Clouds With a Lotka-Volterra Like Model

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Jingyi Chen, Samson Hagos, Jerome Fast, Zhe Feng
{"title":"Predicting the Evolution of Shallow Cumulus Clouds With a Lotka-Volterra Like Model","authors":"Jingyi Chen,&nbsp;Samson Hagos,&nbsp;Jerome Fast,&nbsp;Zhe Feng","doi":"10.1029/2023MS003739","DOIUrl":null,"url":null,"abstract":"<p>In numerical weather prediction and climate models, boundary-layer clouds are controlled by a wide range of subgrid-scale processes. However, understanding the nature of these processes and their role in the evolution of the cloud size distribution as a whole has been elusive. To address this issue, we adopt a novel empirical framework from the field of population dynamics to model the evolution of cloud size statistics by using the shallow cumulus properties obtained from a large-eddy simulation (LES). Our approach involves representing the cloud size distribution and the total cloud area using a revised Lotka-Volterra model and ridge linear model, respectively. The physical interpretation of the total cloud area and coefficients obtained from the optimization of the models reveals three stages probably interpreted by dominant processes: the formation of new clouds, the growth of single clouds, and a steady state with organized transitions involving the growth and decay of multiple clouds. Furthermore, we showcase the potential of this framework to serve as a component of scale-aware parameterizations of shallow-convective clouds in atmospheric models.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003739","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003739","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In numerical weather prediction and climate models, boundary-layer clouds are controlled by a wide range of subgrid-scale processes. However, understanding the nature of these processes and their role in the evolution of the cloud size distribution as a whole has been elusive. To address this issue, we adopt a novel empirical framework from the field of population dynamics to model the evolution of cloud size statistics by using the shallow cumulus properties obtained from a large-eddy simulation (LES). Our approach involves representing the cloud size distribution and the total cloud area using a revised Lotka-Volterra model and ridge linear model, respectively. The physical interpretation of the total cloud area and coefficients obtained from the optimization of the models reveals three stages probably interpreted by dominant processes: the formation of new clouds, the growth of single clouds, and a steady state with organized transitions involving the growth and decay of multiple clouds. Furthermore, we showcase the potential of this framework to serve as a component of scale-aware parameterizations of shallow-convective clouds in atmospheric models.

Abstract Image

用Lotka-Volterra样模式预测浅积云的演变
在数值天气预报和气候模式中,边界层云受一系列亚网格尺度过程的控制。然而,了解这些过程的本质及其在云大小分布演变中的作用作为一个整体一直是难以捉摸的。为了解决这一问题,我们采用了来自种群动力学领域的一个新的经验框架,通过使用从大涡模拟(LES)中获得的浅积云特性来模拟云大小统计的演变。我们的方法包括分别使用修订的Lotka-Volterra模型和脊线模型来表示云大小分布和总云面积。从模式优化中获得的总云面积和系数的物理解释揭示了可能由主导过程解释的三个阶段:新云的形成、单云的增长和涉及多云增长和衰减的有组织过渡的稳定状态。此外,我们展示了该框架的潜力,可以作为大气模式中浅对流云的尺度感知参数化的组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信