Saeed Keyvanshokooh, Amir Parviz Salati, Ahmad Ghasemi, Samira Nazemroaya, Hossein Houshmand, Mansour Torfi Mozanzadeh
{"title":"Reproductive Benefits of Dietary Selenium Nanoparticles (SeNPs) in Asian Seabass (Lates calcarifer) Male Broodstock","authors":"Saeed Keyvanshokooh, Amir Parviz Salati, Ahmad Ghasemi, Samira Nazemroaya, Hossein Houshmand, Mansour Torfi Mozanzadeh","doi":"10.1007/s10126-025-10429-w","DOIUrl":null,"url":null,"abstract":"<div><p>Selenium (Se), a critical trace element for human and animal health, is essential for numerous physiological processes, including antioxidant defense, immune function, and reproduction. This study investigated the effects of dietary selenium nanoparticles (SeNPs) at 2 mg/kg on the reproductive performance, Se deposition, antioxidant status, and gene expression in male Asian seabass (<i>Lates calcarifer</i>). Over 120 days before spawning, the male broodfish were fed either a control diet (CD) or a SeNP-supplemented diet (SeD) in triplicate tanks per group. The SeD group exhibited significantly higher gonadosomatic index (GSI), fertilization rate, and hatching rate, along with lower rates of abnormal embryogenesis compared to the CD group (<i>P</i> < 0.05). Selenium accumulation was significantly elevated in the liver and testis tissues of the SeD group, corresponding with increased expression of the hepatic <i>selenop</i> gene. Reproduction-related genes, including <i>ar</i>, <i>p450scc</i>, and <i>cdk1</i>, were significantly upregulated in the testis of the SeD group, indicating enhanced reproductive processes. Antioxidant-related genes, including catalase (<i>cat</i>), superoxide dismutase (<i>sod</i>), and glutathione-s-transferase (<i>gst</i>) were also upregulated in both liver and testis tissues, while catalase activity increased in the testis. In terms of sex steroid hormones, the SeD group displayed significantly higher serum levels of testosterone and progesterone (<i>P</i> < 0.05), suggesting enhanced steroidogenesis. The absence of adverse effects further demonstrates the efficacy and safety of SeNP supplementation at 2 mg/kg. This study highlights the potential of SeNPs to enhance reproductive performance, regulate molecular pathways, and optimize broodstock management in aquaculture.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-025-10429-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Selenium (Se), a critical trace element for human and animal health, is essential for numerous physiological processes, including antioxidant defense, immune function, and reproduction. This study investigated the effects of dietary selenium nanoparticles (SeNPs) at 2 mg/kg on the reproductive performance, Se deposition, antioxidant status, and gene expression in male Asian seabass (Lates calcarifer). Over 120 days before spawning, the male broodfish were fed either a control diet (CD) or a SeNP-supplemented diet (SeD) in triplicate tanks per group. The SeD group exhibited significantly higher gonadosomatic index (GSI), fertilization rate, and hatching rate, along with lower rates of abnormal embryogenesis compared to the CD group (P < 0.05). Selenium accumulation was significantly elevated in the liver and testis tissues of the SeD group, corresponding with increased expression of the hepatic selenop gene. Reproduction-related genes, including ar, p450scc, and cdk1, were significantly upregulated in the testis of the SeD group, indicating enhanced reproductive processes. Antioxidant-related genes, including catalase (cat), superoxide dismutase (sod), and glutathione-s-transferase (gst) were also upregulated in both liver and testis tissues, while catalase activity increased in the testis. In terms of sex steroid hormones, the SeD group displayed significantly higher serum levels of testosterone and progesterone (P < 0.05), suggesting enhanced steroidogenesis. The absence of adverse effects further demonstrates the efficacy and safety of SeNP supplementation at 2 mg/kg. This study highlights the potential of SeNPs to enhance reproductive performance, regulate molecular pathways, and optimize broodstock management in aquaculture.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.