Application of Oxide Wear Models to Radial Fretting

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
D. Cubillas, M. Olave, I. Llavori, I. Ulacia, J. Larrañaga, A. Zurutuza, A. Lopez
{"title":"Application of Oxide Wear Models to Radial Fretting","authors":"D. Cubillas,&nbsp;M. Olave,&nbsp;I. Llavori,&nbsp;I. Ulacia,&nbsp;J. Larrañaga,&nbsp;A. Zurutuza,&nbsp;A. Lopez","doi":"10.1007/s11249-025-01970-9","DOIUrl":null,"url":null,"abstract":"<div><p>Modeling mild wear damage mechanisms, such as oxidative wear, is highly complex due to the many mechanical and chemical actors involved. To clarify these mechanisms, the temperature-activated diffusion of oxides through exposed surfaces is used. Results indicate that diffusion kinematics are higher than those determined for the same temperatures without fretting phenomena, an effect that is especially visible when the slip speed is low (&lt; 1 m/s). To understand the mechanism of this damage, the present study examined the evolution of the contact temperature and the dissipated heat, considering temporal non-linearities and roughness effects. This is accomplished by analyzing a case study of an axial bearing in which radial fretting is experimentally induced after applying a variable normal load and by comparing the experimental results to the theoretical calculations in the thermal-activated diffusion model.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-025-01970-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling mild wear damage mechanisms, such as oxidative wear, is highly complex due to the many mechanical and chemical actors involved. To clarify these mechanisms, the temperature-activated diffusion of oxides through exposed surfaces is used. Results indicate that diffusion kinematics are higher than those determined for the same temperatures without fretting phenomena, an effect that is especially visible when the slip speed is low (< 1 m/s). To understand the mechanism of this damage, the present study examined the evolution of the contact temperature and the dissipated heat, considering temporal non-linearities and roughness effects. This is accomplished by analyzing a case study of an axial bearing in which radial fretting is experimentally induced after applying a variable normal load and by comparing the experimental results to the theoretical calculations in the thermal-activated diffusion model.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信