Electrostatic Attraction-Driven Interaction between TiO2 and Colloidal Carbon Quantum Dots for Enhanced Visible Light Photocatalytic Degradation of Tetracycline and Antibacterial Activity Analysis
Shiwei Xu, Song Zhang, Haiguang Zhao, Bing Liu, Yuanming Zhang
{"title":"Electrostatic Attraction-Driven Interaction between TiO2 and Colloidal Carbon Quantum Dots for Enhanced Visible Light Photocatalytic Degradation of Tetracycline and Antibacterial Activity Analysis","authors":"Shiwei Xu, Song Zhang, Haiguang Zhao, Bing Liu, Yuanming Zhang","doi":"10.1007/s10562-025-04939-4","DOIUrl":null,"url":null,"abstract":"<div><p>Developing simple, durable, and efficient photocatalysts is crucial for achieving environmentally friendly treatment of organic pollutants in water. In this study, nanoscale titanium dioxide (TiO<sub>2</sub>) with a size of approximately 5 nm was synthesized using the sol-gel method, and carbon quantum dots (CQDs) with a size of around 3–5 nm were prepared via a vacuum heating process. The preparation conditions could be controlled to render the TiO<sub>2</sub> surface positively charged and the CQDs surface negatively charged. The combination of TiO<sub>2</sub> with CQDs can form a heterojunction, thereby improving light absorption and the separation efficiency of photogenerated carriers. This enables effective light harvesting and carrier transfer, enhancing the photocatalytic performance. The ζ-potentiometer and electron spin resonance (ESR) measurements confirmed the successful fabrication of high-performance TiO<sub>2</sub>/CQDs composites through electrostatic attraction, forming an interfacial high-speed channel for the transfer of photogenerated carriers. The results demonstrated that the degradation kinetics rate of TiO<sub>2</sub>/CQDs composites reached 0.1345 min<sup>− 1</sup> and degraded 98% of tetracycline hydrochloride within 30 min, which is 6.0 and 4.9 times higher than individual TiO<sub>2</sub> and CQDs, respectively. Based on analytical data and experimental results, the photocatalytic mechanism was elucidated, and intermediates along with reactive species were identified to propose possible degradation pathways. Additionally, antimicrobial testing confirmed the nontoxicity of the constructed catalysts and the complete degradation of the pollutants.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-04939-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing simple, durable, and efficient photocatalysts is crucial for achieving environmentally friendly treatment of organic pollutants in water. In this study, nanoscale titanium dioxide (TiO2) with a size of approximately 5 nm was synthesized using the sol-gel method, and carbon quantum dots (CQDs) with a size of around 3–5 nm were prepared via a vacuum heating process. The preparation conditions could be controlled to render the TiO2 surface positively charged and the CQDs surface negatively charged. The combination of TiO2 with CQDs can form a heterojunction, thereby improving light absorption and the separation efficiency of photogenerated carriers. This enables effective light harvesting and carrier transfer, enhancing the photocatalytic performance. The ζ-potentiometer and electron spin resonance (ESR) measurements confirmed the successful fabrication of high-performance TiO2/CQDs composites through electrostatic attraction, forming an interfacial high-speed channel for the transfer of photogenerated carriers. The results demonstrated that the degradation kinetics rate of TiO2/CQDs composites reached 0.1345 min− 1 and degraded 98% of tetracycline hydrochloride within 30 min, which is 6.0 and 4.9 times higher than individual TiO2 and CQDs, respectively. Based on analytical data and experimental results, the photocatalytic mechanism was elucidated, and intermediates along with reactive species were identified to propose possible degradation pathways. Additionally, antimicrobial testing confirmed the nontoxicity of the constructed catalysts and the complete degradation of the pollutants.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.