Qi Zeng;Shahed K. Mohammed;Tajwar Abrar Aleef;Mohammad Honarvar;Caitlin Schneider;Emily H. T. Pang;James Jago;Alnoor Ramji;Eric M. Yoshida;Robert Rohling;Septimiu E. Salcudean
{"title":"Validation of Volumetric Multifrequency Shear Wave Vibro-Elastography With Matrix Array Transducer for the In Vivo Liver","authors":"Qi Zeng;Shahed K. Mohammed;Tajwar Abrar Aleef;Mohammad Honarvar;Caitlin Schneider;Emily H. T. Pang;James Jago;Alnoor Ramji;Eric M. Yoshida;Robert Rohling;Septimiu E. Salcudean","doi":"10.1109/TUFFC.2024.3519192","DOIUrl":null,"url":null,"abstract":"Three-dimensional shear wave absolute vibro-elastography (S-WAVE) is a steady-state, volumetric elastography imaging technique similar to magnetic resonance elastography (MRE), with the additional advantage of multifrequency imaging and a significantly shorter examination time. We present a novel ultrasound matrix array implementation of S-WAVE for high-volume refresh rate acquisition. This new imaging setup is equipped with real-time shear wave monitoring for an improved data collection workflow and image quality. The image processing and elasticity reconstruction pipeline is tailored for high body mass index (BMI) subjects. We characterized this system with tissue phantoms and a human study cohort composed of 7 healthy volunteers and 25 patients with nonalcoholic fatty liver disease. The validation results show that S-WAVE can maintain a high agreement with the liver tissue stiffness measurements obtained with both the 2-D and 3-D MRE techniques, with an average cross correlation >93% and an average <inline-formula> <tex-math>${R} ^{{2}} =0.87$ </tex-math></inline-formula>, which outperforms the conventional transient elasticity technique. Our findings show that the matrix array-based 3-D S-WAVE is a suitable volumetric elastography imaging solution for delivering a similar assessment of liver fibrosis as MRE in a more accessible, flexible, and cost-effective way.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 2","pages":"178-190"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10804857/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional shear wave absolute vibro-elastography (S-WAVE) is a steady-state, volumetric elastography imaging technique similar to magnetic resonance elastography (MRE), with the additional advantage of multifrequency imaging and a significantly shorter examination time. We present a novel ultrasound matrix array implementation of S-WAVE for high-volume refresh rate acquisition. This new imaging setup is equipped with real-time shear wave monitoring for an improved data collection workflow and image quality. The image processing and elasticity reconstruction pipeline is tailored for high body mass index (BMI) subjects. We characterized this system with tissue phantoms and a human study cohort composed of 7 healthy volunteers and 25 patients with nonalcoholic fatty liver disease. The validation results show that S-WAVE can maintain a high agreement with the liver tissue stiffness measurements obtained with both the 2-D and 3-D MRE techniques, with an average cross correlation >93% and an average ${R} ^{{2}} =0.87$ , which outperforms the conventional transient elasticity technique. Our findings show that the matrix array-based 3-D S-WAVE is a suitable volumetric elastography imaging solution for delivering a similar assessment of liver fibrosis as MRE in a more accessible, flexible, and cost-effective way.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.