Detection of metastatic breast carcinoma in sentinel lymph node frozen sections using an artificial intelligence-assisted system

IF 2.9 4区 医学 Q2 PATHOLOGY
Chia-Ping Chang , Chih-Yi Hsu , Hsiang Sheng Wang , Peng-Chuna Feng , Wen-Yih Liang
{"title":"Detection of metastatic breast carcinoma in sentinel lymph node frozen sections using an artificial intelligence-assisted system","authors":"Chia-Ping Chang ,&nbsp;Chih-Yi Hsu ,&nbsp;Hsiang Sheng Wang ,&nbsp;Peng-Chuna Feng ,&nbsp;Wen-Yih Liang","doi":"10.1016/j.prp.2025.155836","DOIUrl":null,"url":null,"abstract":"<div><div>We developed an automatic method based on a convolutional neural network (CNN) that identifies metastatic lesions in whole slide images (WSI) of intraoperative frozen sections from sentinel lymph nodes in breast cancer. A total of 954 sentinel lymph node frozen sections, encompassing all types of breast cancer, were collected and examined at our institution between January 1, 2021, and September 27, 2022. Seventy-two cases from a total of 954 cases, including 50 macrometastases, 16 micrometastases, and 6 negatives, were selected and annotated for training a model, which was a self-developed platform (EasyPath) built using R 4.1.3 accompanied by Python 3.7 as the reticulate package. Another 105 metastasis-positive and 80 metastasis-negative cases from the remaining 882 cases were collected to validate and test the algorithm. Our algorithm successfully identified 103 cases (98 %) of metastases, including 85 cases of macrometastases and 18 cases of micrometastasis, with the inference time averaging 87.3 seconds per case. The algorithm correctly identified all of the macrometastases and 90 % of the micrometastases. The sensitivity for detecting micrometastases significantly outperformed that of the pathologists (p = 0.014, McNemar’s test). Furthermore, we provide a workflow that deploys our algorithm into the daily practice of assessing intraoperative frozen sections. Our algorithm provides a robust backup for detecting metastases, particularly for high sensitivity for micrometastases, which will minimize errors in the pathological assessment of intraoperative frozen section of sentinel lymph nodes.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"267 ","pages":"Article 155836"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033825000287","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We developed an automatic method based on a convolutional neural network (CNN) that identifies metastatic lesions in whole slide images (WSI) of intraoperative frozen sections from sentinel lymph nodes in breast cancer. A total of 954 sentinel lymph node frozen sections, encompassing all types of breast cancer, were collected and examined at our institution between January 1, 2021, and September 27, 2022. Seventy-two cases from a total of 954 cases, including 50 macrometastases, 16 micrometastases, and 6 negatives, were selected and annotated for training a model, which was a self-developed platform (EasyPath) built using R 4.1.3 accompanied by Python 3.7 as the reticulate package. Another 105 metastasis-positive and 80 metastasis-negative cases from the remaining 882 cases were collected to validate and test the algorithm. Our algorithm successfully identified 103 cases (98 %) of metastases, including 85 cases of macrometastases and 18 cases of micrometastasis, with the inference time averaging 87.3 seconds per case. The algorithm correctly identified all of the macrometastases and 90 % of the micrometastases. The sensitivity for detecting micrometastases significantly outperformed that of the pathologists (p = 0.014, McNemar’s test). Furthermore, we provide a workflow that deploys our algorithm into the daily practice of assessing intraoperative frozen sections. Our algorithm provides a robust backup for detecting metastases, particularly for high sensitivity for micrometastases, which will minimize errors in the pathological assessment of intraoperative frozen section of sentinel lymph nodes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.60%
发文量
405
审稿时长
24 days
期刊介绍: Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信