Investigation of intrinsic and extrinsic defects in Na-doped Cu2Sn1-xGexS3 thin films by photoluminescence

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Ryodai Ichihara , Takeshi Tasaki , Ayaka Kanai , Hideaki Araki , Kunihiko Tanaka
{"title":"Investigation of intrinsic and extrinsic defects in Na-doped Cu2Sn1-xGexS3 thin films by photoluminescence","authors":"Ryodai Ichihara ,&nbsp;Takeshi Tasaki ,&nbsp;Ayaka Kanai ,&nbsp;Hideaki Araki ,&nbsp;Kunihiko Tanaka","doi":"10.1016/j.jssc.2025.125244","DOIUrl":null,"url":null,"abstract":"<div><div>The defect properties of NaF-deposited Cu<sub>2</sub>Sn<sub>1–<em>x</em></sub>Ge<sub><em>x</em></sub>S<sub>3</sub> (CTGS) thin films, which are expected to improve the conversion efficiency of CTGS solar cells, were investigated by photoluminescence (PL). The PL spectra from a 0 mg of NaF deposited CTGS thin film were observed to have four peaks: three of donor-acceptor pair (DAP) recombination luminescence and one of the excitons (EX) or near the band edge (NBE) luminescence. On the other hand, 10 mg of NaF-deposited CTGS thin film exhibited PL spectra with three peaks, including two from DAP recombination luminescence and one from EX or NBE luminescence. One peak in the Na-undoped CTGS thin film exhibited an activation energy of 39.5 ± 21.2 meV, indicating deeper level defects compared to the energy levels of approximately 26 meV at room temperature (RT), which serves as a capture center for minority carriers at RT. In contrast, the Na-doped CTGS thin film exhibited shallower defect levels of 8.2 ± 3.9 meV lower than the energy levels at RT. These results suggest that Na doping generated new defects that served as carrier sources. Consequently, this study suggests that Na element incorporation holds promise for improving the electrical properties of CTGS solar cells. Based on the above findings, we believe that Na-doped CTGS solar cells represent a promising alternative to existing solar cell materials and have, the potential to enhance low conversion efficiency.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"345 ","pages":"Article 125244"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625000672","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The defect properties of NaF-deposited Cu2Sn1–xGexS3 (CTGS) thin films, which are expected to improve the conversion efficiency of CTGS solar cells, were investigated by photoluminescence (PL). The PL spectra from a 0 mg of NaF deposited CTGS thin film were observed to have four peaks: three of donor-acceptor pair (DAP) recombination luminescence and one of the excitons (EX) or near the band edge (NBE) luminescence. On the other hand, 10 mg of NaF-deposited CTGS thin film exhibited PL spectra with three peaks, including two from DAP recombination luminescence and one from EX or NBE luminescence. One peak in the Na-undoped CTGS thin film exhibited an activation energy of 39.5 ± 21.2 meV, indicating deeper level defects compared to the energy levels of approximately 26 meV at room temperature (RT), which serves as a capture center for minority carriers at RT. In contrast, the Na-doped CTGS thin film exhibited shallower defect levels of 8.2 ± 3.9 meV lower than the energy levels at RT. These results suggest that Na doping generated new defects that served as carrier sources. Consequently, this study suggests that Na element incorporation holds promise for improving the electrical properties of CTGS solar cells. Based on the above findings, we believe that Na-doped CTGS solar cells represent a promising alternative to existing solar cell materials and have, the potential to enhance low conversion efficiency.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信