Nonlinear adaptive control of flexibly-supported inelastic asymmetric steel structures equipped with MR dampers

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Khorram Sadeghi, Mohammad Mahdi Zafarani, Alireza Emami, Mohammad Sadegh Birzhandi
{"title":"Nonlinear adaptive control of flexibly-supported inelastic asymmetric steel structures equipped with MR dampers","authors":"Khorram Sadeghi,&nbsp;Mohammad Mahdi Zafarani,&nbsp;Alireza Emami,&nbsp;Mohammad Sadegh Birzhandi","doi":"10.1016/j.soildyn.2025.109291","DOIUrl":null,"url":null,"abstract":"<div><div>Despite previous studies, this paper simultaneously addresses the challenges of soil-structure interaction (SSI) and nonlinear structural behavior in torsionally irregular building structures equipped with magnetorheological (MR) dampers, utilizing a supervisory nonlinear adaptive control procedure. This represents a significant step toward improving the design of earthquake-resisting structures. In order to consider the effects of torsional behavior on the performance of semi-active MR control systems, various inelastic asymmetric steel structures with different periods, eccentricities, and torsional-to-translational frequency ratios based on supports with different levels of flexibility were used. In these structures, the steel elements were modeled by the extended plasticity (fiber) while the support flexibility effects were accounted for based on the substructure method in OpenSees software. A new model-based nonlinear adaptive control algorithm was employed to control a wide range of structures subjected to various seismic records in bi-directional excitation, incorporating the effects of support flexibility. Results show that the MR dampers reduce the Engineering Demand Parameters (EDPs) significantly, considering the effects of the soft and stiff edges of the structure in various scenarios. Analysis of the effects of the support flexibility on the MR damper performance demonstrated the successful function of the damper in improving the seismic performance of such structures.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"192 ","pages":"Article 109291"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125000843","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite previous studies, this paper simultaneously addresses the challenges of soil-structure interaction (SSI) and nonlinear structural behavior in torsionally irregular building structures equipped with magnetorheological (MR) dampers, utilizing a supervisory nonlinear adaptive control procedure. This represents a significant step toward improving the design of earthquake-resisting structures. In order to consider the effects of torsional behavior on the performance of semi-active MR control systems, various inelastic asymmetric steel structures with different periods, eccentricities, and torsional-to-translational frequency ratios based on supports with different levels of flexibility were used. In these structures, the steel elements were modeled by the extended plasticity (fiber) while the support flexibility effects were accounted for based on the substructure method in OpenSees software. A new model-based nonlinear adaptive control algorithm was employed to control a wide range of structures subjected to various seismic records in bi-directional excitation, incorporating the effects of support flexibility. Results show that the MR dampers reduce the Engineering Demand Parameters (EDPs) significantly, considering the effects of the soft and stiff edges of the structure in various scenarios. Analysis of the effects of the support flexibility on the MR damper performance demonstrated the successful function of the damper in improving the seismic performance of such structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信