Evolution characteristics of vertical hydrogen jet flame length at sub-atmospheric pressure

IF 3.6 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Ke Guo , Yawei Tang , Yongjiang Liu , Xuxu Sun
{"title":"Evolution characteristics of vertical hydrogen jet flame length at sub-atmospheric pressure","authors":"Ke Guo ,&nbsp;Yawei Tang ,&nbsp;Yongjiang Liu ,&nbsp;Xuxu Sun","doi":"10.1016/j.jlp.2025.105572","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, an experimental investigation about the hydrogen jet flame was carried out at sub-atmospheric pressure. The atmospheric pressures range from 40 kPa to 100 kPa. And the effects of volume flow rates (from 10SLPM to 25SLPM) and nozzle diameters (including 2 mm and 4 mm) were considered. The universality of the scale parameters given in previous studies were further confirmed at sub-atmospheric pressure. The critical Froude number for the transition from buoyancy-controlled to momentum-controlled jet flame was adjusted to the value of 30. Moreover, it can be found that the flame length at sub-atmospheric pressure is nearly independent of Froude number. The excellent correlation between the dimensionless heat release rate to the 0.4 power and the hydrogen jet flame length can be obtained at sub-atmospheric pressure. Ambient density was introduced into the dimensionless heat release rate to explain the change of atmospheric pressure. Through the formal transformation of dimensionless heat release rate, the quantitative correlation between flame length and mass flow rate, ambient density and temperature was presented. This paper proposes a hydrogen jet flame theory at sub-atmospheric pressure considering continuous pressure levels. Current results also provide a valuable reference for developing new standards to prevent hydrogen jet flames at high altitudes.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"94 ","pages":"Article 105572"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423025000300","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, an experimental investigation about the hydrogen jet flame was carried out at sub-atmospheric pressure. The atmospheric pressures range from 40 kPa to 100 kPa. And the effects of volume flow rates (from 10SLPM to 25SLPM) and nozzle diameters (including 2 mm and 4 mm) were considered. The universality of the scale parameters given in previous studies were further confirmed at sub-atmospheric pressure. The critical Froude number for the transition from buoyancy-controlled to momentum-controlled jet flame was adjusted to the value of 30. Moreover, it can be found that the flame length at sub-atmospheric pressure is nearly independent of Froude number. The excellent correlation between the dimensionless heat release rate to the 0.4 power and the hydrogen jet flame length can be obtained at sub-atmospheric pressure. Ambient density was introduced into the dimensionless heat release rate to explain the change of atmospheric pressure. Through the formal transformation of dimensionless heat release rate, the quantitative correlation between flame length and mass flow rate, ambient density and temperature was presented. This paper proposes a hydrogen jet flame theory at sub-atmospheric pressure considering continuous pressure levels. Current results also provide a valuable reference for developing new standards to prevent hydrogen jet flames at high altitudes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信