Soil depth and fertilizer shape fungal community composition in a long-term fertilizer agricultural field

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE
Yaqin Guo , Julien Guigue , Sara L. Bauke , Stefan Hempel , Matthias C. Rillig
{"title":"Soil depth and fertilizer shape fungal community composition in a long-term fertilizer agricultural field","authors":"Yaqin Guo ,&nbsp;Julien Guigue ,&nbsp;Sara L. Bauke ,&nbsp;Stefan Hempel ,&nbsp;Matthias C. Rillig","doi":"10.1016/j.apsoil.2025.105943","DOIUrl":null,"url":null,"abstract":"<div><div>Soil fungal communities are vital in agro-ecosystems, driving organic matter decomposition and nutrient cycling, yet their distribution across soil depths remain underexplored. This study utilized high-throughput sequencing of fungal ITS2 amplicons to investigate fungal richness, diversity, community composition, and potential functions along a depth gradient (0–100 cm) under various fertilizer treatments in the field (control, NK, NP, PK, NPK). Results revealed that fungal richness and diversity peaked in topsoil (0–30 cm) and markedly declined in subsoil layers (30–100 cm), with distinct fungal taxa present in each layer. The C to N ratio (C/N) (12.9 %) was the most important predictor for ASV observed richness, while Depth (12.8 %) and C/N (11.1 %) were the top predictors for Shannon diversity. Soil depth explained 17.0 % of the variation in community composition, while fertilizer treatments accounted for 8.4 %. Fertilization significantly altered fungal community composition in subsoil layers but had a minimal impact on topsoil communities, with unique biomarkers associated with each treatment. Soil properties, including total organic carbon, pH, electrical conductivity, C to N ratio, clay content, and bulk density, were significant factors driving fungal composition variation across depths. These findings underscore the importance of considering soil depth in studying the impact of fertilization on soil microbiota, providing valuable insights into the complex dynamics of soil microbial communities in response to long-term chemical fertilizer treatment. In the long term, greater insights into fungal dynamics across soil profiles can inform new strategies to help safeguard sustainability of soil, a critical resource for food security.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"207 ","pages":"Article 105943"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325000812","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil fungal communities are vital in agro-ecosystems, driving organic matter decomposition and nutrient cycling, yet their distribution across soil depths remain underexplored. This study utilized high-throughput sequencing of fungal ITS2 amplicons to investigate fungal richness, diversity, community composition, and potential functions along a depth gradient (0–100 cm) under various fertilizer treatments in the field (control, NK, NP, PK, NPK). Results revealed that fungal richness and diversity peaked in topsoil (0–30 cm) and markedly declined in subsoil layers (30–100 cm), with distinct fungal taxa present in each layer. The C to N ratio (C/N) (12.9 %) was the most important predictor for ASV observed richness, while Depth (12.8 %) and C/N (11.1 %) were the top predictors for Shannon diversity. Soil depth explained 17.0 % of the variation in community composition, while fertilizer treatments accounted for 8.4 %. Fertilization significantly altered fungal community composition in subsoil layers but had a minimal impact on topsoil communities, with unique biomarkers associated with each treatment. Soil properties, including total organic carbon, pH, electrical conductivity, C to N ratio, clay content, and bulk density, were significant factors driving fungal composition variation across depths. These findings underscore the importance of considering soil depth in studying the impact of fertilization on soil microbiota, providing valuable insights into the complex dynamics of soil microbial communities in response to long-term chemical fertilizer treatment. In the long term, greater insights into fungal dynamics across soil profiles can inform new strategies to help safeguard sustainability of soil, a critical resource for food security.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信