Construction of dual conductive networks based on material jetting for high-performance flexible strain sensors

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Gang Chen , Yang Li , Pan He , Yujun Wei , Jiupeng Song , Biyou Peng , Yijun Li
{"title":"Construction of dual conductive networks based on material jetting for high-performance flexible strain sensors","authors":"Gang Chen ,&nbsp;Yang Li ,&nbsp;Pan He ,&nbsp;Yujun Wei ,&nbsp;Jiupeng Song ,&nbsp;Biyou Peng ,&nbsp;Yijun Li","doi":"10.1016/j.addma.2025.104698","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible strain sensors convert external mechanical stimuli into corresponding electrical signals, offering broad application prospects in electronic devices. However, achieving both a wide operating range and high sensitivity remains a key challenge. Material jetting (MJ) holds significant potential for sensor fabrication due to its contactless, maskless, and high-resolution printing process. Herein, we developed a flexible strain sensor with dual conductive networks, consisting of a polyvinyl alcohol/multi-walled carbon nanotubes (PVA/MWCNT) substrate layer and an overlying poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/MWCNT (PEDOT:PSS/MWCNT) layer patterned and deposited layer by layer using a typical MJ technology, aerosol jet printing (AJP). Owing to the synergistic effect between the printed circuit and the flexible substrate, the meander-shaped sensor, fabricated under optimized 16-layer printing, achieved a wide strain response range of 0.6–80 % and high sensitivity with a gauge factor (GF) of 31.2. Additionally, the strain sensor stabilized its current signal under 2000 cyclic loading conditions, demonstrating good stability. We further investigated the effect of patterned grid density on sensor sensitivity, finding that sensitivity increased with grid density initially and then decreased, reaching an impressive GF of 47.52 at a grid density of 2 × 6. Furthermore, the sensor demonstrated remarkable versatility in applications such as full-range human body motion detection, Morse code communication, and UAV flight monitoring, including real-time strain detection during takeoff and landing processes. This study highlights the potential of AJP technology for precise patterning and the fabrication of next-generation flexible strain sensors.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"100 ","pages":"Article 104698"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425000624","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible strain sensors convert external mechanical stimuli into corresponding electrical signals, offering broad application prospects in electronic devices. However, achieving both a wide operating range and high sensitivity remains a key challenge. Material jetting (MJ) holds significant potential for sensor fabrication due to its contactless, maskless, and high-resolution printing process. Herein, we developed a flexible strain sensor with dual conductive networks, consisting of a polyvinyl alcohol/multi-walled carbon nanotubes (PVA/MWCNT) substrate layer and an overlying poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/MWCNT (PEDOT:PSS/MWCNT) layer patterned and deposited layer by layer using a typical MJ technology, aerosol jet printing (AJP). Owing to the synergistic effect between the printed circuit and the flexible substrate, the meander-shaped sensor, fabricated under optimized 16-layer printing, achieved a wide strain response range of 0.6–80 % and high sensitivity with a gauge factor (GF) of 31.2. Additionally, the strain sensor stabilized its current signal under 2000 cyclic loading conditions, demonstrating good stability. We further investigated the effect of patterned grid density on sensor sensitivity, finding that sensitivity increased with grid density initially and then decreased, reaching an impressive GF of 47.52 at a grid density of 2 × 6. Furthermore, the sensor demonstrated remarkable versatility in applications such as full-range human body motion detection, Morse code communication, and UAV flight monitoring, including real-time strain detection during takeoff and landing processes. This study highlights the potential of AJP technology for precise patterning and the fabrication of next-generation flexible strain sensors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信