Experimental study on thermal cycle performance of DD6 single crystal thermal barrier coating with film cooling holes

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS
Wenbing Tian, Wenhu Wang, Yifeng Xiong, Yuanbin Wang
{"title":"Experimental study on thermal cycle performance of DD6 single crystal thermal barrier coating with film cooling holes","authors":"Wenbing Tian,&nbsp;Wenhu Wang,&nbsp;Yifeng Xiong,&nbsp;Yuanbin Wang","doi":"10.1016/j.surfcoat.2025.131899","DOIUrl":null,"url":null,"abstract":"<div><div>Film-cooling holes play a critical role in increasing the inlet temperature of aviation gas turbine engines. However, the presence of these cooling holes can lead to local thermal and mechanical stresses during cold-hot cycling and high-temperature gas erosion, resulting in coating spallation along the cooling holes. Moreover, the use of picosecond laser drilling can exacerbate the coating's failure at these damaged locations. This study conducts thermal cycling experiments on DD6 single-crystal thermal barrier coatings with cooling holes, analyzing the effects of hole structure and laser processing on the thermal cycling life, surface morphology, and microstructure of the thermal barrier coatings. The results indicate that the damage and failure of the coatings are less severe for non-conventional holes compared to inclined holes, and the thermal cycling life of non-conventional holes is higher than that of inclined holes. The sharp side of the non-conventional hole exhibits smaller damage area compared to the inclined hole, while the blunt side shows no significant damage. Furthermore, when using a scanning speed of 300 mm/s and a spacing of 0.025 mm, the non-conventional holes demonstrate minimal coating damage and superior thermal cycling performance. Finally, the failure mechanism of thermal barrier coatings is analysed.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"499 ","pages":"Article 131899"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225001732","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Film-cooling holes play a critical role in increasing the inlet temperature of aviation gas turbine engines. However, the presence of these cooling holes can lead to local thermal and mechanical stresses during cold-hot cycling and high-temperature gas erosion, resulting in coating spallation along the cooling holes. Moreover, the use of picosecond laser drilling can exacerbate the coating's failure at these damaged locations. This study conducts thermal cycling experiments on DD6 single-crystal thermal barrier coatings with cooling holes, analyzing the effects of hole structure and laser processing on the thermal cycling life, surface morphology, and microstructure of the thermal barrier coatings. The results indicate that the damage and failure of the coatings are less severe for non-conventional holes compared to inclined holes, and the thermal cycling life of non-conventional holes is higher than that of inclined holes. The sharp side of the non-conventional hole exhibits smaller damage area compared to the inclined hole, while the blunt side shows no significant damage. Furthermore, when using a scanning speed of 300 mm/s and a spacing of 0.025 mm, the non-conventional holes demonstrate minimal coating damage and superior thermal cycling performance. Finally, the failure mechanism of thermal barrier coatings is analysed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信