Process intensification in hydrothermal liquefaction of biomass: A review

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Shahin Mazhkoo , Salman Soltanian , Habeeb O. Odebiyi , Omid Norouzi , Mitchell Ubene , Aneela Hayder , Omid Pourali , Rafael M. Santos , Robert C. Brown , Animesh Dutta
{"title":"Process intensification in hydrothermal liquefaction of biomass: A review","authors":"Shahin Mazhkoo ,&nbsp;Salman Soltanian ,&nbsp;Habeeb O. Odebiyi ,&nbsp;Omid Norouzi ,&nbsp;Mitchell Ubene ,&nbsp;Aneela Hayder ,&nbsp;Omid Pourali ,&nbsp;Rafael M. Santos ,&nbsp;Robert C. Brown ,&nbsp;Animesh Dutta","doi":"10.1016/j.jece.2025.115722","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrothermal liquefaction (HTL) presents a promising pathway for converting wet biomass resources into biofuels, offering significant advantages over conventional methods. However, numerous challenges must be addressed for HTL scale-up, including energy provision for the endothermic process, heat and mass transfer limitations, slurry concentration and pumpability challenges, char and coke formation, and continuous phase separation. This review explores key strategies such as autothermal HTL, which improves process efficiency and reduces external energy requirements by coupling exothermic and endothermic reactions within the same reactor, thereby simplifying reactor design and reducing operational costs. Additionally, multistage HTL processes are highlighted for their ability to optimize biocrude quality and yield by fractionating biomass conversion stages, resulting in higher energy returns on investment and better-quality biocrude. Solvothermal HTL and integration techniques for aqueous phase are also discussed. Furthermore, the HTL patent landscape is discussed to provide insights into current technological advancements. This review aims to offer a comprehensive understanding of process intensification in HTL, highlighting innovative solutions to enhance the efficiency and scalability of the process for sustainable biofuel production.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 2","pages":"Article 115722"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343725004178","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrothermal liquefaction (HTL) presents a promising pathway for converting wet biomass resources into biofuels, offering significant advantages over conventional methods. However, numerous challenges must be addressed for HTL scale-up, including energy provision for the endothermic process, heat and mass transfer limitations, slurry concentration and pumpability challenges, char and coke formation, and continuous phase separation. This review explores key strategies such as autothermal HTL, which improves process efficiency and reduces external energy requirements by coupling exothermic and endothermic reactions within the same reactor, thereby simplifying reactor design and reducing operational costs. Additionally, multistage HTL processes are highlighted for their ability to optimize biocrude quality and yield by fractionating biomass conversion stages, resulting in higher energy returns on investment and better-quality biocrude. Solvothermal HTL and integration techniques for aqueous phase are also discussed. Furthermore, the HTL patent landscape is discussed to provide insights into current technological advancements. This review aims to offer a comprehensive understanding of process intensification in HTL, highlighting innovative solutions to enhance the efficiency and scalability of the process for sustainable biofuel production.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信