Observational constraints using Bayesian Statistics and deep learning in Kaniadakis holographic dark energy

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Kapil , Lokesh Kumar Sharma , Anil Kumar Yadav
{"title":"Observational constraints using Bayesian Statistics and deep learning in Kaniadakis holographic dark energy","authors":"Kapil ,&nbsp;Lokesh Kumar Sharma ,&nbsp;Anil Kumar Yadav","doi":"10.1016/j.ascom.2025.100939","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present the Kaniadakis holographic dark energy (KHDE) model with hybrid expansion law, which describes the Universe accelerating expansion in the flat Friedmann-Lema<span><math><mover><mrow><mi>i</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>tre-Robertson-Walker Universe. The deceleration parameter obtained in the KHDE model depicts the expansion of the universe from decelerating to an accelerating phase. The KHDE model’s equation of state (EoS) parameter reproduces the Cosmos’ rich behaviour, such as the phantom division line spanning the quintessence era (<span><math><mrow><mi>ω</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></mrow></math></span>). We include the statefinder pair <span><math><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow></math></span>, which emulates the <span><math><mi>Λ</mi></math></span> CDM model in the future. Bayesian Statistics and 57 Hubble data points, 6 baryonic acoustic oscillations <span><math><mrow><mo>(</mo><mi>B</mi><mi>A</mi><mi>O</mi><mo>)</mo></mrow></math></span> data points, and 1048 Pantheon Type Ia supernovae <span><math><mrow><mo>(</mo><mi>S</mi><mi>N</mi><mi>I</mi><mi>a</mi><mo>)</mo></mrow></math></span> data points are used to extract model constraints. Bayesian and <span><math><mrow><mi>A</mi><mi>N</mi><mi>N</mi></mrow></math></span> findings are also compared. CoLFI, an ANN-based parameter estimation approach is employed. CoLFI is more efficient for parameter estimation, especially for intractable likelihood functions or big, resource-intensive cosmological models. Some physical properties of the model are also discussed in detail.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"51 ","pages":"Article 100939"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133725000125","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present the Kaniadakis holographic dark energy (KHDE) model with hybrid expansion law, which describes the Universe accelerating expansion in the flat Friedmann-Lemaĩtre-Robertson-Walker Universe. The deceleration parameter obtained in the KHDE model depicts the expansion of the universe from decelerating to an accelerating phase. The KHDE model’s equation of state (EoS) parameter reproduces the Cosmos’ rich behaviour, such as the phantom division line spanning the quintessence era (ω>1). We include the statefinder pair (r,s), which emulates the Λ CDM model in the future. Bayesian Statistics and 57 Hubble data points, 6 baryonic acoustic oscillations (BAO) data points, and 1048 Pantheon Type Ia supernovae (SNIa) data points are used to extract model constraints. Bayesian and ANN findings are also compared. CoLFI, an ANN-based parameter estimation approach is employed. CoLFI is more efficient for parameter estimation, especially for intractable likelihood functions or big, resource-intensive cosmological models. Some physical properties of the model are also discussed in detail.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信