Characterization identification and speciated emission inventory construction of anthropogenic volatile organic compounds (VOCs) in Beijing, China

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Xiaoyu Liu , Hanyu Zhang , Zhe Lv , Huahua Bai , Guohao Li
{"title":"Characterization identification and speciated emission inventory construction of anthropogenic volatile organic compounds (VOCs) in Beijing, China","authors":"Xiaoyu Liu ,&nbsp;Hanyu Zhang ,&nbsp;Zhe Lv ,&nbsp;Huahua Bai ,&nbsp;Guohao Li","doi":"10.1016/j.apr.2025.102452","DOIUrl":null,"url":null,"abstract":"<div><div>Volatile organic compounds (VOCs) significantly impact air quality and human health, garnering widespread attention. We conducted a comparative analysis of anthropogenic VOC emissions across different years, established a speciated VOC emission inventory for Beijing in 2020 and assessed the ozone formation potential (OFP). The VOC emissions showed a consistent downward trend, ranging from 10.19 × 10<sup>4</sup> t to 28.36 × 10<sup>4</sup> t in 2007–2020. The main sectors shifted from mobile sources (43.42%) and solvent utilization (26.35%) in 2007 to solvent utilization (55.99%) and mobile sources (24.00%) in 2020. The key contributing districts shifted from Fangshan (28.92%), Chaoyang (9.84%), and Daxing (7.33%) in 2013 to Chaoyang (14.29%), Haidian (11.42%), and Fangshan (10.33%) in 2020. The profile dataset encompasses 15 sectors and includes 117 VOC species, with an estimated total of 5.07 × 10<sup>4</sup> t of VOC emissions in 2020, with alkanes, alkenes, alkyne, aromatics, halocarbons, and OVOCs accounting for 34.51%, 17.84%, 1.01%, 36.20%, 7.37%, and 3.07%, respectively. Significant differences were observed in the proportions of various VOC species across sectoral emissions. This dataset shows substantial deviations from the U.S. SPECIATE database, highlighting the significance of developing VOC source profiles. The uncertainties in VOC emission estimates primarily originate from variations in activity levels, emission factors and spatial distribution of emissions. Some sectors with high OFPs, like automobile manufacturing, barbecue and residential combustion are regarded as critical targets for emission control. Aromatics, alkenes, and OVOCs were identified as the major contributors to OFP, and controlling their emissions is essential for reducing ozone formation in Beijing.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 4","pages":"Article 102452"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225000546","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Volatile organic compounds (VOCs) significantly impact air quality and human health, garnering widespread attention. We conducted a comparative analysis of anthropogenic VOC emissions across different years, established a speciated VOC emission inventory for Beijing in 2020 and assessed the ozone formation potential (OFP). The VOC emissions showed a consistent downward trend, ranging from 10.19 × 104 t to 28.36 × 104 t in 2007–2020. The main sectors shifted from mobile sources (43.42%) and solvent utilization (26.35%) in 2007 to solvent utilization (55.99%) and mobile sources (24.00%) in 2020. The key contributing districts shifted from Fangshan (28.92%), Chaoyang (9.84%), and Daxing (7.33%) in 2013 to Chaoyang (14.29%), Haidian (11.42%), and Fangshan (10.33%) in 2020. The profile dataset encompasses 15 sectors and includes 117 VOC species, with an estimated total of 5.07 × 104 t of VOC emissions in 2020, with alkanes, alkenes, alkyne, aromatics, halocarbons, and OVOCs accounting for 34.51%, 17.84%, 1.01%, 36.20%, 7.37%, and 3.07%, respectively. Significant differences were observed in the proportions of various VOC species across sectoral emissions. This dataset shows substantial deviations from the U.S. SPECIATE database, highlighting the significance of developing VOC source profiles. The uncertainties in VOC emission estimates primarily originate from variations in activity levels, emission factors and spatial distribution of emissions. Some sectors with high OFPs, like automobile manufacturing, barbecue and residential combustion are regarded as critical targets for emission control. Aromatics, alkenes, and OVOCs were identified as the major contributors to OFP, and controlling their emissions is essential for reducing ozone formation in Beijing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信