Ziang Zhu , Shaokang Dong , Han Zhang , Wayne Parker , Ran Yin , Xuanye Bai , Zhengxin Yu , Jinfeng Wang , Yang Gao , Hongqiang Ren
{"title":"Bayesian Optimization-Enhanced Reinforcement learning for Self-adaptive and multi-objective control of wastewater treatment","authors":"Ziang Zhu , Shaokang Dong , Han Zhang , Wayne Parker , Ran Yin , Xuanye Bai , Zhengxin Yu , Jinfeng Wang , Yang Gao , Hongqiang Ren","doi":"10.1016/j.biortech.2025.132210","DOIUrl":null,"url":null,"abstract":"<div><div>Controllers of wastewater treatment plants (WWTPs) often struggle to maintain optimal performance due to dynamic influent characteristics and the need to balance multiple operational objectives. In this study, Reinforcement Learning (RL) algorithms across different activated sludge process configurations was tested, and a novel approach that integrates RL with Bayesian Optimization (BO) to enhance the control of critical operational parameters in activated sludge processes was developed. This study extended the application of advanced machine learning techniques to complex WWTP control problems, moving beyond simplified benchmarks. The integration of BO with RL avoided sub-optimal performance and accelerated convergence to optimal control policies in controlling the A2O process, resulting in a significant 46% reduction in operational costs and a 12% decrease in energy consumption while maintaining compliance with effluent discharge standards. This approach offers a practical pathway for WWTPs to enhance treatment efficiency, reduce operational costs, and contribute to sustainable wastewater management practices.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"421 ","pages":"Article 132210"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425001762","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Controllers of wastewater treatment plants (WWTPs) often struggle to maintain optimal performance due to dynamic influent characteristics and the need to balance multiple operational objectives. In this study, Reinforcement Learning (RL) algorithms across different activated sludge process configurations was tested, and a novel approach that integrates RL with Bayesian Optimization (BO) to enhance the control of critical operational parameters in activated sludge processes was developed. This study extended the application of advanced machine learning techniques to complex WWTP control problems, moving beyond simplified benchmarks. The integration of BO with RL avoided sub-optimal performance and accelerated convergence to optimal control policies in controlling the A2O process, resulting in a significant 46% reduction in operational costs and a 12% decrease in energy consumption while maintaining compliance with effluent discharge standards. This approach offers a practical pathway for WWTPs to enhance treatment efficiency, reduce operational costs, and contribute to sustainable wastewater management practices.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.