Enhanced removal of tetracycline from water using MgO-modified g-C3N4 composite: Synthesis optimization and mechanism investigation

IF 6.3 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Hui Yu , Longfei Gao , Xinyuan Zhang , Shuang Zhang , Wenshi Chi , Long Zhang , Jianzhuo Li , Yushi Tian , Hongguang Cai , Ying Zhang
{"title":"Enhanced removal of tetracycline from water using MgO-modified g-C3N4 composite: Synthesis optimization and mechanism investigation","authors":"Hui Yu ,&nbsp;Longfei Gao ,&nbsp;Xinyuan Zhang ,&nbsp;Shuang Zhang ,&nbsp;Wenshi Chi ,&nbsp;Long Zhang ,&nbsp;Jianzhuo Li ,&nbsp;Yushi Tian ,&nbsp;Hongguang Cai ,&nbsp;Ying Zhang","doi":"10.1016/j.jwpe.2025.107176","DOIUrl":null,"url":null,"abstract":"<div><div>Tetracycline(TC) is a typical pharmaceutical and personal care product (PPCP) that harms ecological health due to its impact on human allergic reactions, bacterial resistance, and environmental microbiota. Thus, developing environmentally friendly, efficient, and suitable methods to eliminate TC and inactivate bacteria in aquatic environments is becoming essential. A facile hydrothermal approach was developed to synthesize MgO-modified g-C<sub>3</sub>N<sub>4</sub> composites for efficient TC removal from water. The as-prepared composites were thoroughly characterized by BET, SEM, XRD, and XPS analyses, confirming the successful incorporation of MgO into the g-C<sub>3</sub>N<sub>4</sub> framework. Under optimal conditions (1:1 MgO/g-C<sub>3</sub>N<sub>4</sub> ratio, 150 °C synthesis temperature), the composite achieved 84.89 % TC removal within 90 min under visible light, substantially outperforming pristine materials (MgO, g-C<sub>3</sub>N<sub>4</sub>). The composite maintained removal efficiency above 70 % after six successive cycles, demonstrating excellent stability. Mechanistic investigations identified O<sub>2</sub>•<sup>−</sup> as the dominant reactive species, with h<sup>+</sup> playing a secondary role. Analysis of atomic Fukui indices revealed preferential radical attack at C<sub>7</sub>, O<sub>20</sub>, and N<sub>24</sub> sites, leading to TC degradation through hydroxylation and cyclization pathways. The composite showed promising performance in actual river water treatment, suggesting potential for practical applications. This work provides insights for developing efficient photocatalytic materials for pharmaceutical pollutant removal from water.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"71 ","pages":"Article 107176"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221471442500248X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tetracycline(TC) is a typical pharmaceutical and personal care product (PPCP) that harms ecological health due to its impact on human allergic reactions, bacterial resistance, and environmental microbiota. Thus, developing environmentally friendly, efficient, and suitable methods to eliminate TC and inactivate bacteria in aquatic environments is becoming essential. A facile hydrothermal approach was developed to synthesize MgO-modified g-C3N4 composites for efficient TC removal from water. The as-prepared composites were thoroughly characterized by BET, SEM, XRD, and XPS analyses, confirming the successful incorporation of MgO into the g-C3N4 framework. Under optimal conditions (1:1 MgO/g-C3N4 ratio, 150 °C synthesis temperature), the composite achieved 84.89 % TC removal within 90 min under visible light, substantially outperforming pristine materials (MgO, g-C3N4). The composite maintained removal efficiency above 70 % after six successive cycles, demonstrating excellent stability. Mechanistic investigations identified O2 as the dominant reactive species, with h+ playing a secondary role. Analysis of atomic Fukui indices revealed preferential radical attack at C7, O20, and N24 sites, leading to TC degradation through hydroxylation and cyclization pathways. The composite showed promising performance in actual river water treatment, suggesting potential for practical applications. This work provides insights for developing efficient photocatalytic materials for pharmaceutical pollutant removal from water.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of water process engineering
Journal of water process engineering Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
10.70
自引率
8.60%
发文量
846
审稿时长
24 days
期刊介绍: The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信