{"title":"The boundedness of the triangular Hilbert transforms along curves","authors":"Junfeng Li , Xinyu Wang , Haixia Yu","doi":"10.1016/j.jmaa.2025.129343","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, for general plane curves <em>γ</em> satisfying some suitable smoothness and curvature conditions, we establish the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> boundedness of the triangular Hilbert transform along curves <span><math><mo>(</mo><mi>t</mi><mo>,</mo><mi>γ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> with <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo><mi>r</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> satisfying <span><math><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>q</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi>r</mi></math></span>, and the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> boundedness for the associated maximal function, where <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span> as above and <span><math><mi>r</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"547 2","pages":"Article 129343"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25001246","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, for general plane curves γ satisfying some suitable smoothness and curvature conditions, we establish the boundedness of the triangular Hilbert transform along curves with satisfying , and the boundedness for the associated maximal function, where as above and .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.