Dual role of Baimao-Longdan-Congrong-Fang in inhibiting Staphylococcus aureus virulence factors and regulating TNF-α/TNFR1/NF-κB/MMP9 axis

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Tao Jiang, Xiujing Zhu, Zixin Yin, Rui Gao, Yufen Li, Chenhao Li, Qianting Meng, Xiaojuan Zhu, Wu Song, Xin Su
{"title":"Dual role of Baimao-Longdan-Congrong-Fang in inhibiting Staphylococcus aureus virulence factors and regulating TNF-α/TNFR1/NF-κB/MMP9 axis","authors":"Tao Jiang,&nbsp;Xiujing Zhu,&nbsp;Zixin Yin,&nbsp;Rui Gao,&nbsp;Yufen Li,&nbsp;Chenhao Li,&nbsp;Qianting Meng,&nbsp;Xiaojuan Zhu,&nbsp;Wu Song,&nbsp;Xin Su","doi":"10.1016/j.phymed.2025.156477","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Baimao-Longdan-Congrong-Fang (BLCF), a traditional Chinese herbal formula described in the <em>Taiping Shenghui Fang</em> (998 AD), consists of medicinal plants with heat-clearing and tonifying properties. BLCF has a promise as a treatment for <em>Staphylococcus aureus</em> (<em>S. aureus</em>) pneumonia, according to its historical use and current pharmacological research.</div></div><div><h3>Purpose</h3><div>In this study, the inhibitory effects of BLCF on <em>S. aureus</em> virulence factors were evaluated <em>in vitro</em>, and its mechanisms of action were investigated in a methicillin-resistant <em>S. aureus</em> (MRSA) pneumonia mouse model.</div></div><div><h3>Methods</h3><div>The inhibitory effect of BLCF on <em>S. aureus</em> virulence factors, including sortase A (SrtA) and α-hemolysin (Hla), was investigated by fluorescence resonance energy transfer (FRET) and hemolysis assays. A C57BL/6J mouse model of MRSA pneumonia was employed to evaluate its therapeutic efficacy. Accordingly, an integrated strategy of medicinal chemistry, network pharmacology analysis, GEO database analysis, bioinformatics, molecular docking, molecular dynamics simulation, GeneMANIA-based functional association (GMFA), and GSEA was used to identify and illustrate potential therapeutic targets and mechanisms. Subsequently, the mechanistic results were confirmed by Western blot analysis and RT-qPCR.</div></div><div><h3>Results</h3><div>While BLCF exhibited weak inhibitory activity against <em>S. aureus</em> USA300, Newman, and SA37 strains, it significantly suppressed SrtA-related virulence functions without affecting bacterial growth. FRET and hemolysis assays confirmed that BLCF inhibited SrtA activity (IC<sub>50</sub> = 1.25 mg/mL) while decreasing hemolytic activity. Furthermore, BLCF protected mice from MRSA infection, increasing their survival rates. Bioinformatics analysis identified 26 active compounds and 2 hub genes (<em>Tnf</em> and <em>Mmp9</em>) that were associated with 5 types of immune cell, including activated CD4 T cells, myeloid-derived suppressor cells, activated dendritic cells, macrophages, and mast cells. Molecular docking revealed 3 active compounds (isoacteoside, verbascoside, and echinacoside) that exhibited strong binding affinities to TNF, MMP9, and SrtA. Molecular dynamics simulations validated the stable interactions between isoacteoside and the target proteins, yielding binding energies of −136.76 ± 8.83 kJ/mol, −174.98 ± 14.89 kJ/mol, and −186.34 ± 9.06 kJ/mol, respectively. The therapeutic effect of BLCF was closely linked to the NF-κB signaling pathway, as revealed by GMFA and GSEA analyses. <em>In vivo</em>, BLCF reduced lung bacterial load, improved the wet/dry ratio, and decreased inflammatory cytokines, thereby enhancing lung histopathology through modulation of the TNF-α/TNFR1/NF-κB/MMP9 axis.</div></div><div><h3>Conclusions</h3><div>BLCF can effectively treat MRSA pneumonia in mice by inhibiting SrtA activity, decreasing hemolytic activity, and regulating the TNF-α/TNFR1/NF-κB/MMP9 axis. These findings suggest BLCF, a traditional herbal formula, as a promising novel therapeutic approach to treat pneumonia.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"139 ","pages":"Article 156477"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325001187","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Baimao-Longdan-Congrong-Fang (BLCF), a traditional Chinese herbal formula described in the Taiping Shenghui Fang (998 AD), consists of medicinal plants with heat-clearing and tonifying properties. BLCF has a promise as a treatment for Staphylococcus aureus (S. aureus) pneumonia, according to its historical use and current pharmacological research.

Purpose

In this study, the inhibitory effects of BLCF on S. aureus virulence factors were evaluated in vitro, and its mechanisms of action were investigated in a methicillin-resistant S. aureus (MRSA) pneumonia mouse model.

Methods

The inhibitory effect of BLCF on S. aureus virulence factors, including sortase A (SrtA) and α-hemolysin (Hla), was investigated by fluorescence resonance energy transfer (FRET) and hemolysis assays. A C57BL/6J mouse model of MRSA pneumonia was employed to evaluate its therapeutic efficacy. Accordingly, an integrated strategy of medicinal chemistry, network pharmacology analysis, GEO database analysis, bioinformatics, molecular docking, molecular dynamics simulation, GeneMANIA-based functional association (GMFA), and GSEA was used to identify and illustrate potential therapeutic targets and mechanisms. Subsequently, the mechanistic results were confirmed by Western blot analysis and RT-qPCR.

Results

While BLCF exhibited weak inhibitory activity against S. aureus USA300, Newman, and SA37 strains, it significantly suppressed SrtA-related virulence functions without affecting bacterial growth. FRET and hemolysis assays confirmed that BLCF inhibited SrtA activity (IC50 = 1.25 mg/mL) while decreasing hemolytic activity. Furthermore, BLCF protected mice from MRSA infection, increasing their survival rates. Bioinformatics analysis identified 26 active compounds and 2 hub genes (Tnf and Mmp9) that were associated with 5 types of immune cell, including activated CD4 T cells, myeloid-derived suppressor cells, activated dendritic cells, macrophages, and mast cells. Molecular docking revealed 3 active compounds (isoacteoside, verbascoside, and echinacoside) that exhibited strong binding affinities to TNF, MMP9, and SrtA. Molecular dynamics simulations validated the stable interactions between isoacteoside and the target proteins, yielding binding energies of −136.76 ± 8.83 kJ/mol, −174.98 ± 14.89 kJ/mol, and −186.34 ± 9.06 kJ/mol, respectively. The therapeutic effect of BLCF was closely linked to the NF-κB signaling pathway, as revealed by GMFA and GSEA analyses. In vivo, BLCF reduced lung bacterial load, improved the wet/dry ratio, and decreased inflammatory cytokines, thereby enhancing lung histopathology through modulation of the TNF-α/TNFR1/NF-κB/MMP9 axis.

Conclusions

BLCF can effectively treat MRSA pneumonia in mice by inhibiting SrtA activity, decreasing hemolytic activity, and regulating the TNF-α/TNFR1/NF-κB/MMP9 axis. These findings suggest BLCF, a traditional herbal formula, as a promising novel therapeutic approach to treat pneumonia.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信