An efficient broadband metasurface design for smart health care and future communication applications

Q3 Physics and Astronomy
Abdulkadir Cildir , Farooq A. Tahir , Abdul Jabbar , Adnan Zahid , Masood ur Rehman , Hasan Abbas , Qammer H. Abbasi
{"title":"An efficient broadband metasurface design for smart health care and future communication applications","authors":"Abdulkadir Cildir ,&nbsp;Farooq A. Tahir ,&nbsp;Abdul Jabbar ,&nbsp;Adnan Zahid ,&nbsp;Masood ur Rehman ,&nbsp;Hasan Abbas ,&nbsp;Qammer H. Abbasi","doi":"10.1016/j.rio.2024.100772","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a broadband metasurface consisting of a novel compact resonator to achieve linear polarization conversion in reflection mode. This compact resonator is designed on Roger 5880 substrate, measuring 1.575 mm in thickness, and possessing a loss tangent of 0.004. This structure is also upheld by a metal ground. The described unit cell effectively sends back incoming waves by converting 90<sup>0</sup> across a wide range of frequencies. This unit cell presents an efficiency exceeding 90 % for polarization conversion in the following frequency regimes: 12.2–41.5 GHz for normal incident waves. At the same time, this design includes polarization conversion with 90 % efficiency in broadband from 12.5 GHz to 30.6 GHz for angularly polarized waves up to <span><math><mrow><msup><mrow><mn>30</mn></mrow><mn>0</mn></msup></mrow></math></span>. Behind this broadband polarization transformation lies the concept of surface current distribution and a high impedance surface. Given the broad-spectrum coverage and high-efficiency polarization conversion capabilities, our proposal holds significant potential for a wide range of applications.</div></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":"19 ","pages":"Article 100772"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695012400169X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a broadband metasurface consisting of a novel compact resonator to achieve linear polarization conversion in reflection mode. This compact resonator is designed on Roger 5880 substrate, measuring 1.575 mm in thickness, and possessing a loss tangent of 0.004. This structure is also upheld by a metal ground. The described unit cell effectively sends back incoming waves by converting 900 across a wide range of frequencies. This unit cell presents an efficiency exceeding 90 % for polarization conversion in the following frequency regimes: 12.2–41.5 GHz for normal incident waves. At the same time, this design includes polarization conversion with 90 % efficiency in broadband from 12.5 GHz to 30.6 GHz for angularly polarized waves up to 300. Behind this broadband polarization transformation lies the concept of surface current distribution and a high impedance surface. Given the broad-spectrum coverage and high-efficiency polarization conversion capabilities, our proposal holds significant potential for a wide range of applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信